# The Gödel Completeness Theorem for Uncountable Languages

Julian J. Schlöder; Peter Koepke

Formalized Mathematics (2012)

- Volume: 20, Issue: 3, page 199-203
- ISSN: 1426-2630

## Access Full Article

top## Abstract

top## How to cite

topJulian J. Schlöder, and Peter Koepke. "The Gödel Completeness Theorem for Uncountable Languages." Formalized Mathematics 20.3 (2012): 199-203. <http://eudml.org/doc/268200>.

@article{JulianJ2012,

abstract = {This article is the second in a series of two Mizar articles constituting a formal proof of the Gödel Completeness theorem [15] for uncountably large languages. We follow the proof given in [16]. The present article contains the techniques required to expand a theory such that the expanded theory contains witnesses and is negation faithful. Then the completeness theorem follows immediately.},

author = {Julian J. Schlöder, Peter Koepke},

journal = {Formalized Mathematics},

keywords = {Mizar; formal proof; Gödel completeness theorem},

language = {eng},

number = {3},

pages = {199-203},

title = {The Gödel Completeness Theorem for Uncountable Languages},

url = {http://eudml.org/doc/268200},

volume = {20},

year = {2012},

}

TY - JOUR

AU - Julian J. Schlöder

AU - Peter Koepke

TI - The Gödel Completeness Theorem for Uncountable Languages

JO - Formalized Mathematics

PY - 2012

VL - 20

IS - 3

SP - 199

EP - 203

AB - This article is the second in a series of two Mizar articles constituting a formal proof of the Gödel Completeness theorem [15] for uncountably large languages. We follow the proof given in [16]. The present article contains the techniques required to expand a theory such that the expanded theory contains witnesses and is negation faithful. Then the completeness theorem follows immediately.

LA - eng

KW - Mizar; formal proof; Gödel completeness theorem

UR - http://eudml.org/doc/268200

ER -

## References

top- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
- [3] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589-593, 1990.
- [4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
- [5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
- [6] Patrick Braselmann and Peter Koepke. Equivalences of inconsistency and Henkin models. Formalized Mathematics, 13(1):45-48, 2005.
- [7] Patrick Braselmann and Peter Koepke. G¨odel’s completeness theorem. Formalized Mathematics, 13(1):49-53, 2005.
- [8] Patrick Braselmann and Peter Koepke. A sequent calculus for first-order logic. FormalizedMathematics, 13(1):33-39, 2005.
- [9] Patrick Braselmann and Peter Koepke. Substitution in first-order formulas. Part II. The construction of first-order formulas. Formalized Mathematics, 13(1):27-32, 2005.
- [10] Czesław Bylinski. A classical first order language. Formalized Mathematics, 1(4):669-676, 1990.
- [11] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [12] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [13] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
- [14] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
- [15] Kurt G¨odel. Die Vollst¨andigkeit der Axiome des logischen Funktionenkalk¨uls. Monatshefte f¨ur Mathematik und Physik 37, 1930.
- [16] W. Thomas H.-D. Ebbinghaus, J. Flum. Einf¨uhrung in die Mathematische Logik. Springer-Verlag, Berlin Heidelberg, 2007.
- [17] Piotr Rudnicki and Andrzej Trybulec. A first order language. Formalized Mathematics, 1(2):303-311, 1990.
- [18] Julian J. Schlöder and Peter Koepke. Transition of consistency and satisfiability under language extensions. Formalized Mathematics, 20(3):193-197, 2012, doi: 10.2478/v10037-012-0022-0.[Crossref] Zbl1288.03034
- [19] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
- [20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [21] Edmund Woronowicz. Interpretation and satisfiability in the first order logic. FormalizedMathematics, 1(4):739-743, 1990.
- [22] Edmund Woronowicz. Many argument relations. Formalized Mathematics, 1(4):733-737, 1990.
- [23] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.