Inclusion properties of certain subclass of analytic functions defined by multiplier transformations

Mohamed Aouf; Rabha El-Ashwah

Annales UMCS, Mathematica (2009)

  • Volume: 63, Issue: 1, page 29-38
  • ISSN: 2083-7402

Abstract

top
Let A denote the class of analytic functions with normalization [...] in the open unit disk [...] Set [...] and define [...] in terms of the Hadamard product [...] In this paper, we introduce several new subclasses of analytic functions defined by means of the operator [...] [...] .Inclusion properties of these classes and the classes involving the generalized Libera integral operator are also considered.

How to cite

top

Mohamed Aouf, and Rabha El-Ashwah. "Inclusion properties of certain subclass of analytic functions defined by multiplier transformations." Annales UMCS, Mathematica 63.1 (2009): 29-38. <http://eudml.org/doc/268242>.

@article{MohamedAouf2009,
abstract = {Let A denote the class of analytic functions with normalization [...] in the open unit disk [...] Set [...] and define [...] in terms of the Hadamard product [...] In this paper, we introduce several new subclasses of analytic functions defined by means of the operator [...] [...] .Inclusion properties of these classes and the classes involving the generalized Libera integral operator are also considered.},
author = {Mohamed Aouf, Rabha El-Ashwah},
journal = {Annales UMCS, Mathematica},
keywords = {Subordination; analytic; multiplier transformation; Libera integral operator; starlike function; convex function; close-to-convex function; generalized Libera integral operator},
language = {eng},
number = {1},
pages = {29-38},
title = {Inclusion properties of certain subclass of analytic functions defined by multiplier transformations},
url = {http://eudml.org/doc/268242},
volume = {63},
year = {2009},
}

TY - JOUR
AU - Mohamed Aouf
AU - Rabha El-Ashwah
TI - Inclusion properties of certain subclass of analytic functions defined by multiplier transformations
JO - Annales UMCS, Mathematica
PY - 2009
VL - 63
IS - 1
SP - 29
EP - 38
AB - Let A denote the class of analytic functions with normalization [...] in the open unit disk [...] Set [...] and define [...] in terms of the Hadamard product [...] In this paper, we introduce several new subclasses of analytic functions defined by means of the operator [...] [...] .Inclusion properties of these classes and the classes involving the generalized Libera integral operator are also considered.
LA - eng
KW - Subordination; analytic; multiplier transformation; Libera integral operator; starlike function; convex function; close-to-convex function; generalized Libera integral operator
UR - http://eudml.org/doc/268242
ER -

References

top
  1. Al-Oboudi, F. M., On univalent functions defined by a generalized Sălăgean operator, Internat. J. Math. Math. Sci. 27 (2004), 1429-1436.[Crossref] Zbl1072.30009
  2. Bernardi, S. D., Convex and starlike univalent functions, Trans. Amer. Math. Soc. 35 (1969), 429-446.[Crossref] Zbl0172.09703
  3. Cătaş, A., On certain class of p-valent functions defined by new multiplier transformations, Proceedings Book of the International Symposium on Geometric Function Theory and Applications, August 20-24, 2007, TC Istanbul Kultur University, Turkey, 241-251. 
  4. Cho, N. E., Srivastava, H. M., Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Modelling, 37 (1-2) (2003), 39-49. Zbl1050.30007
  5. Cho, N. E., Kim, T. H., Multiplier transformations and strongly close-to-convex functions, Bull. Korean. Math. Soc. 40 (3) (2003), 399-410. Zbl1032.30007
  6. Choi, J. H., Saigo, M. and Srivastava, H. M., Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl. 276 (2002), 432-445. Zbl1035.30004
  7. Eenigenburg, P., Miller, S. S., Mocanu, P. T. and Reade, M. O., On a Briot-Bouquet differential subordination, General Inequalities, Vol. 3, Birkhäuser-Verlag, Basel, 1983, 339-348. Zbl0527.30008
  8. Kim, Y. C., Choi, J. H. and Sugawa, T., Coefficient bounds and convolution properties for certain classes of close-to-convex functions, Proc. Japan Acad. Ser. A Math. Sci. 76 (2000), 95-93.[Crossref] Zbl0965.30006
  9. Libera, R. J., Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1956), 755-758. Zbl0158.07702
  10. Liu, J. L., The Noor, integral and strongly starlike functions, J. Math. Anal. Appl. 261 (2001), 441-447. Zbl1040.30005
  11. Liu, J. L., Noor, K. I., Some properties of Noor integral operator, J. Nat. Geom. 21 (2002), 81-90. Zbl1005.30015
  12. Ma, W. C., Minda, D., An internal geometric characterization of strongly starlike functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 45 (1991), 89-97. 
  13. Miller, S. S., Mocanu, P. T., Differential subordinations and univalent functions, Michigan Math. J. 28, no. 2 (1981), 157-171. Zbl0439.30015
  14. Noor, K. I., On new class of integral operator, J. Nat. Geom. 16 (1999), 71-80. Zbl0942.30007
  15. Noor, K. I., Noor, M. A., On integral operator, J. Math. Anal. Appl. 238 (1999), 341-352. Zbl0934.30007
  16. Owa, S., Srivastava, H. M., Some applications of the generalized Libera integral operator, Proc. Japan Acad. Ser. A Math. Sci. 62 (1986), 125-128.[Crossref] Zbl0583.30016
  17. Sălăgean, G. Ş., Subclasses of univalent functions, Complex analysis - fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), Springer-Verlag, Berlin, 1983, 362-372. 
  18. Srivastava, H. M., Owa, S. (Editors), Current Topics in Analytic Theory, World Sci. Publ., River Edge, NJ, 1992. Zbl0976.00007
  19. Uralegaddi, B. A., Somanatha, C., Certain classes of univalent functions, Current Topics in Analytic Function Theory, (Edited by H. M. Srivastava and S. Owa), World Sci. Publ., River Edge, NJ, 1992, 371-374. Zbl0987.30508

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.