The almost sure central limit theorems for certain order statistics of some stationary Gaussian sequences

Marcin Dudziński

Annales UMCS, Mathematica (2009)

  • Volume: 63, Issue: 1, page 63-81
  • ISSN: 2083-7402

Abstract

top
Suppose that X1, X2, … is some stationary zero mean Gaussian sequence with unit variance. Let {kn} be a certain nondecreasing sequence of positive integers, [...] denote the kn largest maximum of X1, … Xn. We aim at proving the almost sure central limit theorems for the suitably normalized sequence [...] under certain additional assumptions on {kn} and the covariance function [...]

How to cite

top

Marcin Dudziński. "The almost sure central limit theorems for certain order statistics of some stationary Gaussian sequences." Annales UMCS, Mathematica 63.1 (2009): 63-81. <http://eudml.org/doc/268257>.

@article{MarcinDudziński2009,
abstract = {Suppose that X1, X2, … is some stationary zero mean Gaussian sequence with unit variance. Let \{kn\} be a certain nondecreasing sequence of positive integers, [...] denote the kn largest maximum of X1, … Xn. We aim at proving the almost sure central limit theorems for the suitably normalized sequence [...] under certain additional assumptions on \{kn\} and the covariance function [...]},
author = {Marcin Dudziński},
journal = {Annales UMCS, Mathematica},
keywords = {Almost sure central limit theorem; knth largest maxima; stationary Gaussian sequences; Normal Comparison Lemma; almost sure central limit theorem; th largest maxima; normal comparison Lemma},
language = {eng},
number = {1},
pages = {63-81},
title = {The almost sure central limit theorems for certain order statistics of some stationary Gaussian sequences},
url = {http://eudml.org/doc/268257},
volume = {63},
year = {2009},
}

TY - JOUR
AU - Marcin Dudziński
TI - The almost sure central limit theorems for certain order statistics of some stationary Gaussian sequences
JO - Annales UMCS, Mathematica
PY - 2009
VL - 63
IS - 1
SP - 63
EP - 81
AB - Suppose that X1, X2, … is some stationary zero mean Gaussian sequence with unit variance. Let {kn} be a certain nondecreasing sequence of positive integers, [...] denote the kn largest maximum of X1, … Xn. We aim at proving the almost sure central limit theorems for the suitably normalized sequence [...] under certain additional assumptions on {kn} and the covariance function [...]
LA - eng
KW - Almost sure central limit theorem; knth largest maxima; stationary Gaussian sequences; Normal Comparison Lemma; almost sure central limit theorem; th largest maxima; normal comparison Lemma
UR - http://eudml.org/doc/268257
ER -

References

top
  1. Csaki, E., Gonchigdanzan, K., Almost sure limit theorem for the maximum of stationary Gaussian sequences, Statist. Probab. Lett. 58 (2002), 195-203. Zbl1014.60031
  2. Dudziński, M., An almost sure maximum limit theorem for certain class of dependent stationary Gaussian sequences, Demonstratio Math. 35 (4) (2002), 879-890. Zbl1011.60010
  3. Leadbetter, M. R., Lindgren, G. and Rootzen, H., Extremes and Related Properties of Random Sequences and Processes, Springer-Verlag, New York, Heidelberg, Berlin, 1983. Zbl0518.60021
  4. Stadtmueller, U., Almost sure versions of distributional limit theorems for certain order statistics, Statist. Probab. Lett. 58 (2002), 413-426. Zbl1033.60042

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.