On subordination for classes of non-Bazilevič type
Rabha Ibrahim; Maslina Darus; Nikola Tuneski
Annales UMCS, Mathematica (2010)
- Volume: 64, Issue: 2, page 49-60
- ISSN: 2083-7402
Access Full Article
topAbstract
topHow to cite
topReferences
top- Darus, M., Ibrahim, R. W., Coefficient inequalities for a new class of univalent functions, Lobachevskii J. Math. 29(4) (2008), 221-229. Zbl1166.30302
- Ibrahim, R. W., Darus, M., On subordination theorems for new classes of normalize analytic functions, Appl. Math. Sci. (Ruse) 2(56) (2008), 2785-2794. Zbl1187.30018
- Ibrahim, R. W., Darus, M., Subordination for new classes of non-Bazilevič type, UNRI-UKM Symposium, KE-4 (2008).
- Ibrahim, R. W., Darus, M., Differential subordination results for new classes of the family ε (Φ, Ψ), JIPAM. J. Ineq. Pure Appl. Math. 10(1) (2009), Art. 8, 9 pp.
- Jack, I. S., Functions starlike and convex of order k, J. London Math. Soc. 3 (1971), 469-474.[Crossref] Zbl0224.30026
- Miller, S. S., Mocanu, P. T., Differential Subordinantions. Theory and Applications, Monographs and Textbooks in Pure and Applied Mathematics, 225, Marcel Dekker, Inc., New York, 2000.
- Miller, K. S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, Inc., New York, 1993. Zbl0789.26002
- Obradovič, M., A class of univalent functions, Hokkaido Math. J. 27(2) (1998), 329-335. Zbl0908.30009
- Raina, R. K., On certain class of analytic functions and applications to fractional calculus operator, Integral Transform. Spec. Funct. 5 (1997), 247-260.[Crossref] Zbl0907.30013
- Raina, R. K., Srivastava, H. M., A certain subclass of analytic functions associated with operators of fractional calculus, Comput. Math. Appl. 32 (1996), 13-19.[Crossref] Zbl0867.30015
- Shanmugam, T. N., Ravichangran, V. and Sivasubramanian, S., Differential sandwich theorems for some subclasses of analytic functions, Austral. J. Math. Anal. Appl. 3(1) (2006), 1-11.
- Srivastava, H. M., Owa, S. (Eds.), Univalent Functions, Fractional Calculus, and Their Applications, Halsted Press, John Wiley and Sons, New York, Chichester, Brisbane, Toronto, 1989. Zbl0683.00012
- Srivastava, H. M., Owa, S. (Eds.), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London, Hong Kong, 1992. Zbl0976.00007
- Tuneski, N., Darus, M., Fekete-Szegö functional for non-Bazilevič functions, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 18(2) (2002), 63-65. Zbl1017.30012
- Wang, Z., Gao, C. and Liao, M., On certain generalized class of non-Bazilevič functions, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 21(2) (2005), 147-154. Zbl1092.30032