Symmetric, cyclic, and permutation products of manifolds
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1980
Access Full Book
topAbstract
topHow to cite
topClifford H. Wagner. Symmetric, cyclic, and permutation products of manifolds. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1980. <http://eudml.org/doc/268344>.
@book{CliffordH1980,
abstract = {CONTENTSIntroduction................................ 51. Preliminaries.......................... 52. When is the symmetric product a manifold?.............. 123. When is the cyclic product a manifold?............................................................................................. 174. When is the permutation product a manifold? The characterization problem........................... 225. Permutation products of the punctured cell and two-dimensional half-space.......................... 286. Permutation products of the annulus................................................................................................ 347. The second permutation product of the torus.................................................................................. 418. Summary of known characterizations................................................................................................ 46References and bibliography.................................................................................................................. 47},
author = {Clifford H. Wagner},
keywords = {n-fold symmetric product of a topological manifold; n-fold products symmetric which are manifolds},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Symmetric, cyclic, and permutation products of manifolds},
url = {http://eudml.org/doc/268344},
year = {1980},
}
TY - BOOK
AU - Clifford H. Wagner
TI - Symmetric, cyclic, and permutation products of manifolds
PY - 1980
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction................................ 51. Preliminaries.......................... 52. When is the symmetric product a manifold?.............. 123. When is the cyclic product a manifold?............................................................................................. 174. When is the permutation product a manifold? The characterization problem........................... 225. Permutation products of the punctured cell and two-dimensional half-space.......................... 286. Permutation products of the annulus................................................................................................ 347. The second permutation product of the torus.................................................................................. 418. Summary of known characterizations................................................................................................ 46References and bibliography.................................................................................................................. 47
LA - eng
KW - n-fold symmetric product of a topological manifold; n-fold products symmetric which are manifolds
UR - http://eudml.org/doc/268344
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.