Jan Mikusiński, and Roman Sikorski. The elementary theory of distributions (II). 1961. <http://eudml.org/doc/268348>.
@book{JanMikusiński1961, abstract = {CONTENTS Introduction................................................................................... 3 § 1. Terminology and notation.................................................................................... 4 § 2. Uniform and almost uniform convergence....................................................... 6 § 3. Fundamental sequences of smooth functions............................................... 6 § 4. The definition of distributions............................................................................. 7 § 5. Multiplication by a number................................................................................... 8 § 6. Addition................................................................................................................... 9 § 7. Regular operations............................................................................................. 10 § 8. Subtraction, translation, derivation................................................................... 11 § 9. Multiplication of a distribution by a smooth function...................................... 11 § 10. Substitution......................................................................................................... 12 § 11. Product of distributions with separated variables....................................... 13 § 12. Convolution by a smooth function vanishing outside an interval.............. 14 § 13. Calculations with distributions........................................................................ 16 § 14. Delta-sequences and delta-distribution........................................................ 17 § 15. Distributions in subsets.................................................................................... 19 § 16. Distributions as a generalization of the notion of continuous functions.. 19 § 17. Operations on continuous functions............................................................... 21 § 18. Locally integrable functions.............................................................................. 24 § 19. Operations on locally integrable functions.................................................... 25 § 20. Sequences of distributions............................................................................... 27 § 21. Convergence and regular operations............................................................. 30 § 22. Distributionally convergent sequences of smooth functions...................... 32 § 23. Locally convergent sequences of distributions............................................. 34 § 24. Distributions depending on a continuous parameter.................................. 36 § 25. Multidimensional substitution........................................................................... 37 § 26. Distributions constant in some variables....................................................... 39 § 27. Dimension of distributions................................................................................. 41 § 28. Distributions with vanishing m-th derivatives................................................. 44}, author = {Jan Mikusiński, Roman Sikorski}, keywords = {functional analysis}, language = {eng}, title = {The elementary theory of distributions (II)}, url = {http://eudml.org/doc/268348}, year = {1961}, }
TY - BOOK AU - Jan Mikusiński AU - Roman Sikorski TI - The elementary theory of distributions (II) PY - 1961 AB - CONTENTS Introduction................................................................................... 3 § 1. Terminology and notation.................................................................................... 4 § 2. Uniform and almost uniform convergence....................................................... 6 § 3. Fundamental sequences of smooth functions............................................... 6 § 4. The definition of distributions............................................................................. 7 § 5. Multiplication by a number................................................................................... 8 § 6. Addition................................................................................................................... 9 § 7. Regular operations............................................................................................. 10 § 8. Subtraction, translation, derivation................................................................... 11 § 9. Multiplication of a distribution by a smooth function...................................... 11 § 10. Substitution......................................................................................................... 12 § 11. Product of distributions with separated variables....................................... 13 § 12. Convolution by a smooth function vanishing outside an interval.............. 14 § 13. Calculations with distributions........................................................................ 16 § 14. Delta-sequences and delta-distribution........................................................ 17 § 15. Distributions in subsets.................................................................................... 19 § 16. Distributions as a generalization of the notion of continuous functions.. 19 § 17. Operations on continuous functions............................................................... 21 § 18. Locally integrable functions.............................................................................. 24 § 19. Operations on locally integrable functions.................................................... 25 § 20. Sequences of distributions............................................................................... 27 § 21. Convergence and regular operations............................................................. 30 § 22. Distributionally convergent sequences of smooth functions...................... 32 § 23. Locally convergent sequences of distributions............................................. 34 § 24. Distributions depending on a continuous parameter.................................. 36 § 25. Multidimensional substitution........................................................................... 37 § 26. Distributions constant in some variables....................................................... 39 § 27. Dimension of distributions................................................................................. 41 § 28. Distributions with vanishing m-th derivatives................................................. 44 LA - eng KW - functional analysis UR - http://eudml.org/doc/268348 ER -