Derivatives of noninteger order and their applications
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1993
Access Full Book
topAbstract
topHow to cite
topMarek W. Michalski. Derivatives of noninteger order and their applications. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1993. <http://eudml.org/doc/268366>.
@book{MarekW1993,
abstract = {CONTENTS Introduction........................................................................................................................................5I. Derivatives of noninteger order.........................................................................................................6II. Characteristic problem for the Mangeron polyvibrating equation of noninteger order....................17 1. The problem................................................................................................................................17 2. Existence of solutions..................................................................................................................18 3. Uniqueness of the solution...........................................................................................................21 4. Continuous solutions...................................................................................................................23 5. Continuous dependence of the solution on the boundary data...................................................25III. Noncharacteristic boundary value problem...................................................................................26 1. The problem................................................................................................................................26 2. Local solutions of the problem.....................................................................................................27 3. Extension of the local solution.....................................................................................................30IV. Some problems for ordinary differential equations........................................................................32 1. Multipoint problem.......................................................................................................................32 ;1.1. The problem..........................................................................................................................32 ;1.2. Solution of the problem.........................................................................................................33  2. Polarographic equation...............................................................................................................35 ;2.1. The Cauchy problem.............................................................................................................35 ;2.2. Continuous dependence of the solution on the initial data....................................................39 ;2.3. The multipoint problem..........................................................................................................39V. Further applications of the derivatives of noninteger order...........................................................40 1. An application to Mikusi/nski's operator theory............................................................................40 2. Integral representation of analytic functions................................................................................42References........................................................................................................................................451991 Mathematics Subject Classification: 26A33, 26B99, 34A99, 34B99, 35D99, 35L99, 45B05, 45D05, 45E10, 45Gxx, 45P05, 47Gxx.},
author = {Marek W. Michalski},
keywords = {ordinary and partial nonlinear differential equations of fractional order; mixed Riemann-Liouville fractional integrals and derivatives; Abel integral equation; Mangeron polyvibrating equation; nonlinear integral equation},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Derivatives of noninteger order and their applications},
url = {http://eudml.org/doc/268366},
year = {1993},
}
TY - BOOK
AU - Marek W. Michalski
TI - Derivatives of noninteger order and their applications
PY - 1993
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTS Introduction........................................................................................................................................5I. Derivatives of noninteger order.........................................................................................................6II. Characteristic problem for the Mangeron polyvibrating equation of noninteger order....................17 1. The problem................................................................................................................................17 2. Existence of solutions..................................................................................................................18 3. Uniqueness of the solution...........................................................................................................21 4. Continuous solutions...................................................................................................................23 5. Continuous dependence of the solution on the boundary data...................................................25III. Noncharacteristic boundary value problem...................................................................................26 1. The problem................................................................................................................................26 2. Local solutions of the problem.....................................................................................................27 3. Extension of the local solution.....................................................................................................30IV. Some problems for ordinary differential equations........................................................................32 1. Multipoint problem.......................................................................................................................32 ;1.1. The problem..........................................................................................................................32 ;1.2. Solution of the problem.........................................................................................................33  2. Polarographic equation...............................................................................................................35 ;2.1. The Cauchy problem.............................................................................................................35 ;2.2. Continuous dependence of the solution on the initial data....................................................39 ;2.3. The multipoint problem..........................................................................................................39V. Further applications of the derivatives of noninteger order...........................................................40 1. An application to Mikusi/nski's operator theory............................................................................40 2. Integral representation of analytic functions................................................................................42References........................................................................................................................................451991 Mathematics Subject Classification: 26A33, 26B99, 34A99, 34B99, 35D99, 35L99, 45B05, 45D05, 45E10, 45Gxx, 45P05, 47Gxx.
LA - eng
KW - ordinary and partial nonlinear differential equations of fractional order; mixed Riemann-Liouville fractional integrals and derivatives; Abel integral equation; Mangeron polyvibrating equation; nonlinear integral equation
UR - http://eudml.org/doc/268366
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.