Derivatives of noninteger order and their applications

Marek W. Michalski

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1993

Abstract

top
CONTENTS  Introduction........................................................................................................................................5I. Derivatives of noninteger order.........................................................................................................6II. Characteristic problem for the Mangeron polyvibrating equation of noninteger order....................17  1. The problem................................................................................................................................17  2. Existence of solutions..................................................................................................................18  3. Uniqueness of the solution...........................................................................................................21  4. Continuous solutions...................................................................................................................23  5. Continuous dependence of the solution on the boundary data...................................................25III. Noncharacteristic boundary value problem...................................................................................26  1. The problem................................................................................................................................26  2. Local solutions of the problem.....................................................................................................27  3. Extension of the local solution.....................................................................................................30IV. Some problems for ordinary differential equations........................................................................32  1. Multipoint problem.......................................................................................................................32    ;1.1. The problem..........................................................................................................................32    ;1.2. Solution of the problem.........................................................................................................33 &nbsp2. Polarographic equation...............................................................................................................35    ;2.1. The Cauchy problem.............................................................................................................35    ;2.2. Continuous dependence of the solution on the initial data....................................................39    ;2.3. The multipoint problem..........................................................................................................39V. Further applications of the derivatives of noninteger order...........................................................40  1. An application to Mikusi/nski's operator theory............................................................................40  2. Integral representation of analytic functions................................................................................42References........................................................................................................................................451991 Mathematics Subject Classification: 26A33, 26B99, 34A99, 34B99, 35D99, 35L99, 45B05, 45D05, 45E10, 45Gxx, 45P05, 47Gxx.

How to cite

top

Marek W. Michalski. Derivatives of noninteger order and their applications. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1993. <http://eudml.org/doc/268366>.

@book{MarekW1993,
abstract = {CONTENTS  Introduction........................................................................................................................................5I. Derivatives of noninteger order.........................................................................................................6II. Characteristic problem for the Mangeron polyvibrating equation of noninteger order....................17  1. The problem................................................................................................................................17  2. Existence of solutions..................................................................................................................18  3. Uniqueness of the solution...........................................................................................................21  4. Continuous solutions...................................................................................................................23  5. Continuous dependence of the solution on the boundary data...................................................25III. Noncharacteristic boundary value problem...................................................................................26  1. The problem................................................................................................................................26  2. Local solutions of the problem.....................................................................................................27  3. Extension of the local solution.....................................................................................................30IV. Some problems for ordinary differential equations........................................................................32  1. Multipoint problem.......................................................................................................................32    ;1.1. The problem..........................................................................................................................32    ;1.2. Solution of the problem.........................................................................................................33 &nbsp2. Polarographic equation...............................................................................................................35    ;2.1. The Cauchy problem.............................................................................................................35    ;2.2. Continuous dependence of the solution on the initial data....................................................39    ;2.3. The multipoint problem..........................................................................................................39V. Further applications of the derivatives of noninteger order...........................................................40  1. An application to Mikusi/nski's operator theory............................................................................40  2. Integral representation of analytic functions................................................................................42References........................................................................................................................................451991 Mathematics Subject Classification: 26A33, 26B99, 34A99, 34B99, 35D99, 35L99, 45B05, 45D05, 45E10, 45Gxx, 45P05, 47Gxx.},
author = {Marek W. Michalski},
keywords = {ordinary and partial nonlinear differential equations of fractional order; mixed Riemann-Liouville fractional integrals and derivatives; Abel integral equation; Mangeron polyvibrating equation; nonlinear integral equation},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Derivatives of noninteger order and their applications},
url = {http://eudml.org/doc/268366},
year = {1993},
}

TY - BOOK
AU - Marek W. Michalski
TI - Derivatives of noninteger order and their applications
PY - 1993
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTS  Introduction........................................................................................................................................5I. Derivatives of noninteger order.........................................................................................................6II. Characteristic problem for the Mangeron polyvibrating equation of noninteger order....................17  1. The problem................................................................................................................................17  2. Existence of solutions..................................................................................................................18  3. Uniqueness of the solution...........................................................................................................21  4. Continuous solutions...................................................................................................................23  5. Continuous dependence of the solution on the boundary data...................................................25III. Noncharacteristic boundary value problem...................................................................................26  1. The problem................................................................................................................................26  2. Local solutions of the problem.....................................................................................................27  3. Extension of the local solution.....................................................................................................30IV. Some problems for ordinary differential equations........................................................................32  1. Multipoint problem.......................................................................................................................32    ;1.1. The problem..........................................................................................................................32    ;1.2. Solution of the problem.........................................................................................................33 &nbsp2. Polarographic equation...............................................................................................................35    ;2.1. The Cauchy problem.............................................................................................................35    ;2.2. Continuous dependence of the solution on the initial data....................................................39    ;2.3. The multipoint problem..........................................................................................................39V. Further applications of the derivatives of noninteger order...........................................................40  1. An application to Mikusi/nski's operator theory............................................................................40  2. Integral representation of analytic functions................................................................................42References........................................................................................................................................451991 Mathematics Subject Classification: 26A33, 26B99, 34A99, 34B99, 35D99, 35L99, 45B05, 45D05, 45E10, 45Gxx, 45P05, 47Gxx.
LA - eng
KW - ordinary and partial nonlinear differential equations of fractional order; mixed Riemann-Liouville fractional integrals and derivatives; Abel integral equation; Mangeron polyvibrating equation; nonlinear integral equation
UR - http://eudml.org/doc/268366
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.