Projectivity, injectivity and duality

Z. Semadeni

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1963

Abstract

top
CONTENTSINTRODUCTION........................................................................................................................................ 3I. PROJECTIVITY AND INJECTIVITY IN ABSTRACT BICATEGORIES.............................................. 7§ 1. Categories and bicategories........................................................................................................... 7§ 2. Arrow notation and the duality principle......................................................................................... 10§ 3. Singletons........................................................................................................................................... 11§ 4. Projective and injective objects....................................................................................................... 12§ 5. Separators and generators............................................................................................................. 13§ 6. Free and direct objects..................................................................................................................... 10II. SOME SPECIAL BICATEGORIES....................................................................................................... 10§ 7. Table of examples............................................................................................................................. 10§ 8. Topological spaces........................................................................................................................... 10§ 9. Groups. Abelian groups. Modules over a ring.............................................................................. 25§ 10. Locally compact abelian groups.................................................................................................. 28§ 11. Boolean algebras. Compact spaces.......................................................................................... 29§ 12. Banach spaces. Linear topological spaces.............................................................................. 31§ 13. Two-norm spaces and linear spaces with mixed topology.................................................... 33APPENDIX.................................................................................................................................................. 38§ 14. Remarks on subobject and injections....................................................................................... 38§ 16. Tricategories................................................................................................................................... 41REFERENCES.......................................................................................................................................... 44

How to cite

top

Z. Semadeni. Projectivity, injectivity and duality. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1963. <http://eudml.org/doc/268377>.

@book{Z1963,
abstract = {CONTENTSINTRODUCTION........................................................................................................................................ 3I. PROJECTIVITY AND INJECTIVITY IN ABSTRACT BICATEGORIES.............................................. 7§ 1. Categories and bicategories........................................................................................................... 7§ 2. Arrow notation and the duality principle......................................................................................... 10§ 3. Singletons........................................................................................................................................... 11§ 4. Projective and injective objects....................................................................................................... 12§ 5. Separators and generators............................................................................................................. 13§ 6. Free and direct objects..................................................................................................................... 10II. SOME SPECIAL BICATEGORIES....................................................................................................... 10§ 7. Table of examples............................................................................................................................. 10§ 8. Topological spaces........................................................................................................................... 10§ 9. Groups. Abelian groups. Modules over a ring.............................................................................. 25§ 10. Locally compact abelian groups.................................................................................................. 28§ 11. Boolean algebras. Compact spaces.......................................................................................... 29§ 12. Banach spaces. Linear topological spaces.............................................................................. 31§ 13. Two-norm spaces and linear spaces with mixed topology.................................................... 33APPENDIX.................................................................................................................................................. 38§ 14. Remarks on subobject and injections....................................................................................... 38§ 16. Tricategories................................................................................................................................... 41REFERENCES.......................................................................................................................................... 44},
author = {Z. Semadeni},
keywords = {general algebraic structures},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Projectivity, injectivity and duality},
url = {http://eudml.org/doc/268377},
year = {1963},
}

TY - BOOK
AU - Z. Semadeni
TI - Projectivity, injectivity and duality
PY - 1963
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSINTRODUCTION........................................................................................................................................ 3I. PROJECTIVITY AND INJECTIVITY IN ABSTRACT BICATEGORIES.............................................. 7§ 1. Categories and bicategories........................................................................................................... 7§ 2. Arrow notation and the duality principle......................................................................................... 10§ 3. Singletons........................................................................................................................................... 11§ 4. Projective and injective objects....................................................................................................... 12§ 5. Separators and generators............................................................................................................. 13§ 6. Free and direct objects..................................................................................................................... 10II. SOME SPECIAL BICATEGORIES....................................................................................................... 10§ 7. Table of examples............................................................................................................................. 10§ 8. Topological spaces........................................................................................................................... 10§ 9. Groups. Abelian groups. Modules over a ring.............................................................................. 25§ 10. Locally compact abelian groups.................................................................................................. 28§ 11. Boolean algebras. Compact spaces.......................................................................................... 29§ 12. Banach spaces. Linear topological spaces.............................................................................. 31§ 13. Two-norm spaces and linear spaces with mixed topology.................................................... 33APPENDIX.................................................................................................................................................. 38§ 14. Remarks on subobject and injections....................................................................................... 38§ 16. Tricategories................................................................................................................................... 41REFERENCES.......................................................................................................................................... 44
LA - eng
KW - general algebraic structures
UR - http://eudml.org/doc/268377
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.