Projectivity, injectivity and duality
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1963
Access Full Book
topAbstract
topHow to cite
topZ. Semadeni. Projectivity, injectivity and duality. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1963. <http://eudml.org/doc/268377>.
@book{Z1963,
abstract = {CONTENTSINTRODUCTION........................................................................................................................................ 3I. PROJECTIVITY AND INJECTIVITY IN ABSTRACT BICATEGORIES.............................................. 7§ 1. Categories and bicategories........................................................................................................... 7§ 2. Arrow notation and the duality principle......................................................................................... 10§ 3. Singletons........................................................................................................................................... 11§ 4. Projective and injective objects....................................................................................................... 12§ 5. Separators and generators............................................................................................................. 13§ 6. Free and direct objects..................................................................................................................... 10II. SOME SPECIAL BICATEGORIES....................................................................................................... 10§ 7. Table of examples............................................................................................................................. 10§ 8. Topological spaces........................................................................................................................... 10§ 9. Groups. Abelian groups. Modules over a ring.............................................................................. 25§ 10. Locally compact abelian groups.................................................................................................. 28§ 11. Boolean algebras. Compact spaces.......................................................................................... 29§ 12. Banach spaces. Linear topological spaces.............................................................................. 31§ 13. Two-norm spaces and linear spaces with mixed topology.................................................... 33APPENDIX.................................................................................................................................................. 38§ 14. Remarks on subobject and injections....................................................................................... 38§ 16. Tricategories................................................................................................................................... 41REFERENCES.......................................................................................................................................... 44},
author = {Z. Semadeni},
keywords = {general algebraic structures},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Projectivity, injectivity and duality},
url = {http://eudml.org/doc/268377},
year = {1963},
}
TY - BOOK
AU - Z. Semadeni
TI - Projectivity, injectivity and duality
PY - 1963
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSINTRODUCTION........................................................................................................................................ 3I. PROJECTIVITY AND INJECTIVITY IN ABSTRACT BICATEGORIES.............................................. 7§ 1. Categories and bicategories........................................................................................................... 7§ 2. Arrow notation and the duality principle......................................................................................... 10§ 3. Singletons........................................................................................................................................... 11§ 4. Projective and injective objects....................................................................................................... 12§ 5. Separators and generators............................................................................................................. 13§ 6. Free and direct objects..................................................................................................................... 10II. SOME SPECIAL BICATEGORIES....................................................................................................... 10§ 7. Table of examples............................................................................................................................. 10§ 8. Topological spaces........................................................................................................................... 10§ 9. Groups. Abelian groups. Modules over a ring.............................................................................. 25§ 10. Locally compact abelian groups.................................................................................................. 28§ 11. Boolean algebras. Compact spaces.......................................................................................... 29§ 12. Banach spaces. Linear topological spaces.............................................................................. 31§ 13. Two-norm spaces and linear spaces with mixed topology.................................................... 33APPENDIX.................................................................................................................................................. 38§ 14. Remarks on subobject and injections....................................................................................... 38§ 16. Tricategories................................................................................................................................... 41REFERENCES.......................................................................................................................................... 44
LA - eng
KW - general algebraic structures
UR - http://eudml.org/doc/268377
ER -
Citations in EuDML Documents
top- Armin Frei, On complete Saks spaces
- Miroslav Hušek, -categories
- Zbigniew Semadeni, Relations between certain theories in functional analysis and general topology
- J. V. Michalowicz, A special tricategory
- Michael Barr, Building closed categories
- Heinrich Kleisli, Hans-Peter Künzi, Topological totally convex spaces, II
- Michael Barr, Duality of Banach spaces
- R. Pupier, Sur les catégories complètes
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.