Internal and forcing models for the impredicative theory of classes
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1980
Access Full Book
topAbstract
topHow to cite
topRolando Chuaqui. Internal and forcing models for the impredicative theory of classes. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1980. <http://eudml.org/doc/268378>.
@book{RolandoChuaqui1980,
abstract = {CONTENTSIntroduction............................................................................................................ 5I. Axiom system and elementary consequences........................................... 61. Axioms........................................................................................................................ 62. Definitions and elementary consequences........................................................ 9II. Principles of definitions by recursion........................................................... 123. Monotone operations.............................................................................................. 124. Recursion principles............................................................................................... 135. The rank function...................................................................................................... 15III. Well-ordering relations................................................................................... 166. Well-ordering relations............................................................................................ 197. Ordinals and -well-order types.............................................................................. 20IV. Models and satisfaction................................................................................. 258. Satisfaction................................................................................................................ 259. Absoluteness............................................................................................................ 2910. Models of MT........................................................................................................... 31V. The axiom of constructibility........................................................................... 3211. The axiom of constructibility................................................................................. 32VI. Ordined definability......................................................................................... 3712. Existence of hierarchies of all classes and relative constructibility............. 3713. Ordinal definability................................................................................................. 39VII. Complexity of the axiom system.................................................................. 4314. Non-finite axiomatizability and non-axiomatizability with sentences of bounded unrestricted quantifier depth.................. 4315. Complexity of axioms for the predicative sentences....................................... 46VIII. Forcing models............................................................................................. 4710. Forcing..................................................................................................................... 4717. Products of notions of forcing and coherent notions...................................... 55IX. Independence of axioms of choico.............................................................. 5918. Automorphisms of notions of forcing................................................................. 5919. Independence of the local axiom of choico....................................................... 6120. Independence of the global axiom of choico.................................................... 62References............................................................................................................ 65},
author = {Rolando Chuaqui},
keywords = {well-orderings; inductive constructions; axiomatization},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Internal and forcing models for the impredicative theory of classes},
url = {http://eudml.org/doc/268378},
year = {1980},
}
TY - BOOK
AU - Rolando Chuaqui
TI - Internal and forcing models for the impredicative theory of classes
PY - 1980
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction............................................................................................................ 5I. Axiom system and elementary consequences........................................... 61. Axioms........................................................................................................................ 62. Definitions and elementary consequences........................................................ 9II. Principles of definitions by recursion........................................................... 123. Monotone operations.............................................................................................. 124. Recursion principles............................................................................................... 135. The rank function...................................................................................................... 15III. Well-ordering relations................................................................................... 166. Well-ordering relations............................................................................................ 197. Ordinals and -well-order types.............................................................................. 20IV. Models and satisfaction................................................................................. 258. Satisfaction................................................................................................................ 259. Absoluteness............................................................................................................ 2910. Models of MT........................................................................................................... 31V. The axiom of constructibility........................................................................... 3211. The axiom of constructibility................................................................................. 32VI. Ordined definability......................................................................................... 3712. Existence of hierarchies of all classes and relative constructibility............. 3713. Ordinal definability................................................................................................. 39VII. Complexity of the axiom system.................................................................. 4314. Non-finite axiomatizability and non-axiomatizability with sentences of bounded unrestricted quantifier depth.................. 4315. Complexity of axioms for the predicative sentences....................................... 46VIII. Forcing models............................................................................................. 4710. Forcing..................................................................................................................... 4717. Products of notions of forcing and coherent notions...................................... 55IX. Independence of axioms of choico.............................................................. 5918. Automorphisms of notions of forcing................................................................. 5919. Independence of the local axiom of choico....................................................... 6120. Independence of the global axiom of choico.................................................... 62References............................................................................................................ 65
LA - eng
KW - well-orderings; inductive constructions; axiomatization
UR - http://eudml.org/doc/268378
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.