top
CONTENTS0. Introduction...................................................................................................51. Natural bundles...........................................................................................102. Liftings of functions.....................................................................................153. Liftings of functions to the r-frame bundle...................................................224. A space of liftings of functions.....................................................................265. Quasi-liftings and liftings of vector fields to a natural bundle.......................326. Liftings of vector fields to tangent bundles of -velocities.....................397. Decomposition theorem...............................................................................448. Liftings of vector fields to some associated fibre bundles............................499. Final remarks...............................................................................................53References......................................................................................................54
Jacek Gancarzewicz. Liftings of functions and vector fields to natural bundles. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1983. <http://eudml.org/doc/268385>.
@book{JacekGancarzewicz1983, abstract = {CONTENTS0. Introduction...................................................................................................51. Natural bundles...........................................................................................102. Liftings of functions.....................................................................................153. Liftings of functions to the r-frame bundle...................................................224. A space of liftings of functions.....................................................................265. Quasi-liftings and liftings of vector fields to a natural bundle.......................326. Liftings of vector fields to tangent bundles of $p^r$-velocities.....................397. Decomposition theorem...............................................................................448. Liftings of vector fields to some associated fibre bundles............................499. Final remarks...............................................................................................53References......................................................................................................54}, author = {Jacek Gancarzewicz}, keywords = {natural bundles; lifting of functions; lifting of vector fields; pr- velocities}, language = {eng}, location = {Warszawa}, publisher = {Instytut Matematyczny Polskiej Akademi Nauk}, title = {Liftings of functions and vector fields to natural bundles}, url = {http://eudml.org/doc/268385}, year = {1983}, }
TY - BOOK AU - Jacek Gancarzewicz TI - Liftings of functions and vector fields to natural bundles PY - 1983 CY - Warszawa PB - Instytut Matematyczny Polskiej Akademi Nauk AB - CONTENTS0. Introduction...................................................................................................51. Natural bundles...........................................................................................102. Liftings of functions.....................................................................................153. Liftings of functions to the r-frame bundle...................................................224. A space of liftings of functions.....................................................................265. Quasi-liftings and liftings of vector fields to a natural bundle.......................326. Liftings of vector fields to tangent bundles of $p^r$-velocities.....................397. Decomposition theorem...............................................................................448. Liftings of vector fields to some associated fibre bundles............................499. Final remarks...............................................................................................53References......................................................................................................54 LA - eng KW - natural bundles; lifting of functions; lifting of vector fields; pr- velocities UR - http://eudml.org/doc/268385 ER -