Bilinear random integrals

Jan Rosiński

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1987

Abstract

top
CONTENTSI. Introduction.....................................................................................................................................................................5II. Preliminaries...................................................................................................................................................................7  1. Infinitely divisible probability measures on Banach spaces..........................................................................................7  2. Random measures......................................................................................................................................................9III. Bilinear random integral...............................................................................................................................................11  1. Definition and necessary conditions for the existence of a random integral...............................................................11  2. Topology in the space of M-integrable functions........................................................................................................17  3. Characterization of M-integrable functions.................................................................................................................21  4. Approximation by simple functions and some contraction principles..........................................................................33  5. Stable symmetric random integrals............................................................................................................................42IV. Random integrals of Banach space valued functions with respect to real valued random measures..........................45  1. Immediate corollaries from a general theory of random integrals and examples........................................................45  2. Gaussian and stable random integrals......................................................................................................................51  3. Comparison theorem and some applications.............................................................................................................62References......................................................................................................................................................................70

How to cite

top

Jan Rosiński. Bilinear random integrals. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1987. <http://eudml.org/doc/268389>.

@book{JanRosiński1987,
abstract = {CONTENTSI. Introduction.....................................................................................................................................................................5II. Preliminaries...................................................................................................................................................................7  1. Infinitely divisible probability measures on Banach spaces..........................................................................................7  2. Random measures......................................................................................................................................................9III. Bilinear random integral...............................................................................................................................................11  1. Definition and necessary conditions for the existence of a random integral...............................................................11  2. Topology in the space of M-integrable functions........................................................................................................17  3. Characterization of M-integrable functions.................................................................................................................21  4. Approximation by simple functions and some contraction principles..........................................................................33  5. Stable symmetric random integrals............................................................................................................................42IV. Random integrals of Banach space valued functions with respect to real valued random measures..........................45  1. Immediate corollaries from a general theory of random integrals and examples........................................................45  2. Gaussian and stable random integrals......................................................................................................................51  3. Comparison theorem and some applications.............................................................................................................62References......................................................................................................................................................................70},
author = {Jan Rosiński},
keywords = {infinitely divisible probability measure on a Banach space; contraction principles; stable symmetric random integrals; comparison theorem; semistable measures},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Bilinear random integrals},
url = {http://eudml.org/doc/268389},
year = {1987},
}

TY - BOOK
AU - Jan Rosiński
TI - Bilinear random integrals
PY - 1987
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSI. Introduction.....................................................................................................................................................................5II. Preliminaries...................................................................................................................................................................7  1. Infinitely divisible probability measures on Banach spaces..........................................................................................7  2. Random measures......................................................................................................................................................9III. Bilinear random integral...............................................................................................................................................11  1. Definition and necessary conditions for the existence of a random integral...............................................................11  2. Topology in the space of M-integrable functions........................................................................................................17  3. Characterization of M-integrable functions.................................................................................................................21  4. Approximation by simple functions and some contraction principles..........................................................................33  5. Stable symmetric random integrals............................................................................................................................42IV. Random integrals of Banach space valued functions with respect to real valued random measures..........................45  1. Immediate corollaries from a general theory of random integrals and examples........................................................45  2. Gaussian and stable random integrals......................................................................................................................51  3. Comparison theorem and some applications.............................................................................................................62References......................................................................................................................................................................70
LA - eng
KW - infinitely divisible probability measure on a Banach space; contraction principles; stable symmetric random integrals; comparison theorem; semistable measures
UR - http://eudml.org/doc/268389
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.