Bilinear random integrals
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1987
Access Full Book
topAbstract
topHow to cite
topJan Rosiński. Bilinear random integrals. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1987. <http://eudml.org/doc/268389>.
@book{JanRosiński1987,
abstract = {CONTENTSI. Introduction.....................................................................................................................................................................5II. Preliminaries...................................................................................................................................................................7 1. Infinitely divisible probability measures on Banach spaces..........................................................................................7 2. Random measures......................................................................................................................................................9III. Bilinear random integral...............................................................................................................................................11 1. Definition and necessary conditions for the existence of a random integral...............................................................11 2. Topology in the space of M-integrable functions........................................................................................................17 3. Characterization of M-integrable functions.................................................................................................................21 4. Approximation by simple functions and some contraction principles..........................................................................33 5. Stable symmetric random integrals............................................................................................................................42IV. Random integrals of Banach space valued functions with respect to real valued random measures..........................45 1. Immediate corollaries from a general theory of random integrals and examples........................................................45 2. Gaussian and stable random integrals......................................................................................................................51 3. Comparison theorem and some applications.............................................................................................................62References......................................................................................................................................................................70},
author = {Jan Rosiński},
keywords = {infinitely divisible probability measure on a Banach space; contraction principles; stable symmetric random integrals; comparison theorem; semistable measures},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Bilinear random integrals},
url = {http://eudml.org/doc/268389},
year = {1987},
}
TY - BOOK
AU - Jan Rosiński
TI - Bilinear random integrals
PY - 1987
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSI. Introduction.....................................................................................................................................................................5II. Preliminaries...................................................................................................................................................................7 1. Infinitely divisible probability measures on Banach spaces..........................................................................................7 2. Random measures......................................................................................................................................................9III. Bilinear random integral...............................................................................................................................................11 1. Definition and necessary conditions for the existence of a random integral...............................................................11 2. Topology in the space of M-integrable functions........................................................................................................17 3. Characterization of M-integrable functions.................................................................................................................21 4. Approximation by simple functions and some contraction principles..........................................................................33 5. Stable symmetric random integrals............................................................................................................................42IV. Random integrals of Banach space valued functions with respect to real valued random measures..........................45 1. Immediate corollaries from a general theory of random integrals and examples........................................................45 2. Gaussian and stable random integrals......................................................................................................................51 3. Comparison theorem and some applications.............................................................................................................62References......................................................................................................................................................................70
LA - eng
KW - infinitely divisible probability measure on a Banach space; contraction principles; stable symmetric random integrals; comparison theorem; semistable measures
UR - http://eudml.org/doc/268389
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.