On n class of capacities on complex manifolds endowed with an hermitian structure and their relation to elliptic and hyperbolic quasiconformal mappings
top
CONTENTSIntroduction......................................................................................................................................... 5 1. An outline of results.................................................................................................................. 5 2. A fibre bundle model of elementary particles as a motivation for the capacities in question..................................................................................................... 9 3. An example................................................................................................................................ 10 4. A potential-theoretical motivation for the capacities in question..................................... 12 5. Capacities and plurisubharmonic functions....................................................................... 14 6. A homology approach and the general definition of capacity........................................... 16 7. Finiteness and relations between capacities dependent on the chosen covering and independent of it.................................................................................................................... 19 8. Behaviour under holomorphic and biholomorphic mappings......................................... 22 9. Some lemmas on Riemann surfaces................................................................................. 25 10. Comparison of the "complex" and "real" capacities in the case of Riemann surfaces................................................................................................................... 30 11. Dependence on the universal covering manifold............................................................ 33 12. Relation to elliptic and hyperbolic quasiconformal mappings...................................... 36 13. Mathematical and physical conclusions............................................................................ 39References......................................................................................................................................... 41
Julian Ławrynowicz. On n class of capacities on complex manifolds endowed with an hermitian structure and their relation to elliptic and hyperbolic quasiconformal mappings. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1980. <http://eudml.org/doc/268417>.
@book{JulianŁawrynowicz1980, abstract = {CONTENTSIntroduction......................................................................................................................................... 5 1. An outline of results.................................................................................................................. 5 2. A fibre bundle model of elementary particles as a motivation for the capacities in question..................................................................................................... 9 3. An example................................................................................................................................ 10 4. A potential-theoretical motivation for the capacities in question..................................... 12 5. Capacities and plurisubharmonic functions....................................................................... 14 6. A homology approach and the general definition of capacity........................................... 16 7. Finiteness and relations between capacities dependent on the chosen covering and independent of it.................................................................................................................... 19 8. Behaviour under holomorphic and biholomorphic mappings......................................... 22 9. Some lemmas on Riemann surfaces................................................................................. 25 10. Comparison of the "complex" and "real" capacities in the case of Riemann surfaces................................................................................................................... 30 11. Dependence on the universal covering manifold............................................................ 33 12. Relation to elliptic and hyperbolic quasiconformal mappings...................................... 36 13. Mathematical and physical conclusions............................................................................ 39References......................................................................................................................................... 41}, author = {Julian Ławrynowicz}, keywords = {condensor capacities; complex manifolds with Hermitian structure; fiber bundle model for elementary particles; finiteness conditions; seminorms}, language = {eng}, location = {Warszawa}, publisher = {Instytut Matematyczny Polskiej Akademi Nauk}, title = {On n class of capacities on complex manifolds endowed with an hermitian structure and their relation to elliptic and hyperbolic quasiconformal mappings}, url = {http://eudml.org/doc/268417}, year = {1980}, }
TY - BOOK AU - Julian Ławrynowicz TI - On n class of capacities on complex manifolds endowed with an hermitian structure and their relation to elliptic and hyperbolic quasiconformal mappings PY - 1980 CY - Warszawa PB - Instytut Matematyczny Polskiej Akademi Nauk AB - CONTENTSIntroduction......................................................................................................................................... 5 1. An outline of results.................................................................................................................. 5 2. A fibre bundle model of elementary particles as a motivation for the capacities in question..................................................................................................... 9 3. An example................................................................................................................................ 10 4. A potential-theoretical motivation for the capacities in question..................................... 12 5. Capacities and plurisubharmonic functions....................................................................... 14 6. A homology approach and the general definition of capacity........................................... 16 7. Finiteness and relations between capacities dependent on the chosen covering and independent of it.................................................................................................................... 19 8. Behaviour under holomorphic and biholomorphic mappings......................................... 22 9. Some lemmas on Riemann surfaces................................................................................. 25 10. Comparison of the "complex" and "real" capacities in the case of Riemann surfaces................................................................................................................... 30 11. Dependence on the universal covering manifold............................................................ 33 12. Relation to elliptic and hyperbolic quasiconformal mappings...................................... 36 13. Mathematical and physical conclusions............................................................................ 39References......................................................................................................................................... 41 LA - eng KW - condensor capacities; complex manifolds with Hermitian structure; fiber bundle model for elementary particles; finiteness conditions; seminorms UR - http://eudml.org/doc/268417 ER -