On n class of capacities on complex manifolds endowed with an hermitian structure and their relation to elliptic and hyperbolic quasiconformal mappings

Julian Ławrynowicz

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1980

Abstract

top
CONTENTSIntroduction......................................................................................................................................... 5 1. An outline of results.................................................................................................................. 5 2. A fibre bundle model of elementary particles as a motivation for the capacities in question..................................................................................................... 9 3. An example................................................................................................................................ 10 4. A potential-theoretical motivation for the capacities in question..................................... 12 5. Capacities and plurisubharmonic functions....................................................................... 14 6. A homology approach and the general definition of capacity........................................... 16 7. Finiteness and relations between capacities dependent on the chosen covering and independent of it.................................................................................................................... 19 8. Behaviour under holomorphic and biholomorphic mappings......................................... 22 9. Some lemmas on Riemann surfaces................................................................................. 25 10. Comparison of the "complex" and "real" capacities in the case of Riemann surfaces................................................................................................................... 30 11. Dependence on the universal covering manifold............................................................ 33 12. Relation to elliptic and hyperbolic quasiconformal mappings...................................... 36 13. Mathematical and physical conclusions............................................................................ 39References......................................................................................................................................... 41

How to cite

top

Julian Ławrynowicz. On n class of capacities on complex manifolds endowed with an hermitian structure and their relation to elliptic and hyperbolic quasiconformal mappings. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1980. <http://eudml.org/doc/268417>.

@book{JulianŁawrynowicz1980,
abstract = {CONTENTSIntroduction......................................................................................................................................... 5 1. An outline of results.................................................................................................................. 5 2. A fibre bundle model of elementary particles as a motivation for the capacities in question..................................................................................................... 9 3. An example................................................................................................................................ 10 4. A potential-theoretical motivation for the capacities in question..................................... 12 5. Capacities and plurisubharmonic functions....................................................................... 14 6. A homology approach and the general definition of capacity........................................... 16 7. Finiteness and relations between capacities dependent on the chosen covering and independent of it.................................................................................................................... 19 8. Behaviour under holomorphic and biholomorphic mappings......................................... 22 9. Some lemmas on Riemann surfaces................................................................................. 25 10. Comparison of the "complex" and "real" capacities in the case of Riemann surfaces................................................................................................................... 30 11. Dependence on the universal covering manifold............................................................ 33 12. Relation to elliptic and hyperbolic quasiconformal mappings...................................... 36 13. Mathematical and physical conclusions............................................................................ 39References......................................................................................................................................... 41},
author = {Julian Ławrynowicz},
keywords = {condensor capacities; complex manifolds with Hermitian structure; fiber bundle model for elementary particles; finiteness conditions; seminorms},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {On n class of capacities on complex manifolds endowed with an hermitian structure and their relation to elliptic and hyperbolic quasiconformal mappings},
url = {http://eudml.org/doc/268417},
year = {1980},
}

TY - BOOK
AU - Julian Ławrynowicz
TI - On n class of capacities on complex manifolds endowed with an hermitian structure and their relation to elliptic and hyperbolic quasiconformal mappings
PY - 1980
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction......................................................................................................................................... 5 1. An outline of results.................................................................................................................. 5 2. A fibre bundle model of elementary particles as a motivation for the capacities in question..................................................................................................... 9 3. An example................................................................................................................................ 10 4. A potential-theoretical motivation for the capacities in question..................................... 12 5. Capacities and plurisubharmonic functions....................................................................... 14 6. A homology approach and the general definition of capacity........................................... 16 7. Finiteness and relations between capacities dependent on the chosen covering and independent of it.................................................................................................................... 19 8. Behaviour under holomorphic and biholomorphic mappings......................................... 22 9. Some lemmas on Riemann surfaces................................................................................. 25 10. Comparison of the "complex" and "real" capacities in the case of Riemann surfaces................................................................................................................... 30 11. Dependence on the universal covering manifold............................................................ 33 12. Relation to elliptic and hyperbolic quasiconformal mappings...................................... 36 13. Mathematical and physical conclusions............................................................................ 39References......................................................................................................................................... 41
LA - eng
KW - condensor capacities; complex manifolds with Hermitian structure; fiber bundle model for elementary particles; finiteness conditions; seminorms
UR - http://eudml.org/doc/268417
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.