Résolution des équations semilinéaires avec la partie linéaire à noyau de dimension infinie via des applications A-propres

Wiesław Krawcewicz

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1990

Abstract

top
This work is devoted to the solvability of semilinear equations(*) Lx + f(x) = y, x ∈ D(L) ⊂ E, y ∈ F,where E, F are real Banach spaces and L: D(L) → F is a linear operator with dimKerL = codimR(L) = ∞. We introduce the notion of a generalized A-proper mapping f(x) associated with the operator L and show that some classes of monotone-type mappings (i.e. ( M L ) , ( M L ) + , ( S L ) or ( S L ) + ) are nontrivial examples of A-proper mappings. Using the topological transversality, we develop the continuation method for L-condensing A-proper mappings and obtain solvability results for the equation (*). The abstract results for A-proper mappings are applied to the problem of time-periodic solutions of semilinear wave equations. We introduce a generalized coincidence degree called the Browder-Petryshyn-Mawhin coincidence degree.

How to cite

top

Wiesław Krawcewicz. Résolution des équations semilinéaires avec la partie linéaire à noyau de dimension infinie via des applications A-propres. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1990. <http://eudml.org/doc/268429>.

@book{WiesławKrawcewicz1990,
abstract = {TABLE DES MATIÈRES1. Introduction...............................................................................................................52. Notation ....................................................................................................................73. Factorisation fredholmienne et les applications A-propres........................................84. Exemples des applications A-propres - applications des types monotones.............105. Propriétés des applications A-propres....................................................................286. Applications L-condensantes..................................................................................327. Applications aux problèmes de coïncidence............................................................458. Théorie du degré de coïncidence...........................................................................569. Application au système d'équations d'ondes semilinéaires.....................................61Références.................................................................................................................65},
author = {Wiesław Krawcewicz},
keywords = {semilinear equation at resonance; semi-Fredholm operator; infinite dimensional kernel; A-proper mapping; analogue of Galerkin's method; coincidence degree theory},
language = {fre},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Résolution des équations semilinéaires avec la partie linéaire à noyau de dimension infinie via des applications A-propres},
url = {http://eudml.org/doc/268429},
year = {1990},
}

TY - BOOK
AU - Wiesław Krawcewicz
TI - Résolution des équations semilinéaires avec la partie linéaire à noyau de dimension infinie via des applications A-propres
PY - 1990
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - TABLE DES MATIÈRES1. Introduction...............................................................................................................52. Notation ....................................................................................................................73. Factorisation fredholmienne et les applications A-propres........................................84. Exemples des applications A-propres - applications des types monotones.............105. Propriétés des applications A-propres....................................................................286. Applications L-condensantes..................................................................................327. Applications aux problèmes de coïncidence............................................................458. Théorie du degré de coïncidence...........................................................................569. Application au système d'équations d'ondes semilinéaires.....................................61Références.................................................................................................................65
LA - fre
KW - semilinear equation at resonance; semi-Fredholm operator; infinite dimensional kernel; A-proper mapping; analogue of Galerkin's method; coincidence degree theory
UR - http://eudml.org/doc/268429
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.