Propositional extensions of L ω 1 ω

Richard Gostanian; Karel Hrbacek

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1980

Abstract

top
CONTENTS0. Preliminaries....................................................................... 71. Adding propositional connectives to L ω 1 ω ............... 82. The propositional part of L ω 1 ω (S)............................. 103. The operation S and the Boolean algebra B S ............... 114. General model-theoretic properties of L ω 1 ω (S)...... 175. Hanf number computations...................................................... 226. Negative results for L ω 1 ω (S)........................................ 277. Proposition al extensions of L ω 1 ω a in the constructible universe...................................................... 348. The Souslin connective.............................................................. 449. Concluding remarks................................................................... 49References....................................................................................... 53

How to cite

top

Richard Gostanian, and Karel Hrbacek. Propositional extensions of $L_ω_1_ω$. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1980. <http://eudml.org/doc/268442>.

@book{RichardGostanian1980,
abstract = {CONTENTS0. Preliminaries....................................................................... 71. Adding propositional connectives to $L_ω_1_ω$............... 82. The propositional part of $L_ω_1_ω$ (S)............................. 103. The operation S and the Boolean algebra $B_S$............... 114. General model-theoretic properties of $L_ω_1_ω$(S)...... 175. Hanf number computations...................................................... 226. Negative results for $L_ω_1_ω$(S)........................................ 277. Proposition al extensions of $L_ω_1_ω$a in the constructible universe...................................................... 348. The Souslin connective.............................................................. 449. Concluding remarks................................................................... 49References....................................................................................... 53},
author = {Richard Gostanian, Karel Hrbacek},
keywords = {model existence theorem; completeness theorem; interpolation theorem; infinitary propositional connectives; axiom of constructibility; axiom of determinateness; Wadge and Solovay degrees; Hanf number computations; absolute logics; Souslin logic},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Propositional extensions of $L_ω_1_ω$},
url = {http://eudml.org/doc/268442},
year = {1980},
}

TY - BOOK
AU - Richard Gostanian
AU - Karel Hrbacek
TI - Propositional extensions of $L_ω_1_ω$
PY - 1980
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTS0. Preliminaries....................................................................... 71. Adding propositional connectives to $L_ω_1_ω$............... 82. The propositional part of $L_ω_1_ω$ (S)............................. 103. The operation S and the Boolean algebra $B_S$............... 114. General model-theoretic properties of $L_ω_1_ω$(S)...... 175. Hanf number computations...................................................... 226. Negative results for $L_ω_1_ω$(S)........................................ 277. Proposition al extensions of $L_ω_1_ω$a in the constructible universe...................................................... 348. The Souslin connective.............................................................. 449. Concluding remarks................................................................... 49References....................................................................................... 53
LA - eng
KW - model existence theorem; completeness theorem; interpolation theorem; infinitary propositional connectives; axiom of constructibility; axiom of determinateness; Wadge and Solovay degrees; Hanf number computations; absolute logics; Souslin logic
UR - http://eudml.org/doc/268442
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.