Basic concepts of the theory of geometric objects

M. Kucharzewski; M. Kuczma

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1964

Abstract

top
ContentsIntroduction............................................................................................................................................................................... 3§ 1. Historical development of the concept of a geometric object..................................................................................4§ 2. Manifold, coordinate system, transformations of the coordinate system............................................................. 7§ 3. Group, pseudogroup, groupoid.................................................................................................................................... 9§ 4. Wundheiler's definition of a geometric object........................................................................................................... 15§ 5. Special geometric objects............................................................................................................................................. 18§ 6. Abstract geometric object. The Haantjes-Laman definition of a geometric object............................................. 24§ 7. Classification of geometric objects.............................................................................................................................. 28§ 8. Equivalence of geometric objects................................................................................................................................ 39§ 9. Fibres of equivalent geometric objects....................................................................................................................... 42§ 10. Concomitants................................................................................................................................................................. 47§ 11. Algebra of geometric objects...................................................................................................................................... 54§ 12. Differential concomitants............................................................................................................................................. 57References............................................................................................................................................................................... 63

How to cite

top

M. Kucharzewski, and M. Kuczma. Basic concepts of the theory of geometric objects. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1964. <http://eudml.org/doc/268445>.

@book{M1964,
abstract = {ContentsIntroduction............................................................................................................................................................................... 3§ 1. Historical development of the concept of a geometric object..................................................................................4§ 2. Manifold, coordinate system, transformations of the coordinate system............................................................. 7§ 3. Group, pseudogroup, groupoid.................................................................................................................................... 9§ 4. Wundheiler's definition of a geometric object........................................................................................................... 15§ 5. Special geometric objects............................................................................................................................................. 18§ 6. Abstract geometric object. The Haantjes-Laman definition of a geometric object............................................. 24§ 7. Classification of geometric objects.............................................................................................................................. 28§ 8. Equivalence of geometric objects................................................................................................................................ 39§ 9. Fibres of equivalent geometric objects....................................................................................................................... 42§ 10. Concomitants................................................................................................................................................................. 47§ 11. Algebra of geometric objects...................................................................................................................................... 54§ 12. Differential concomitants............................................................................................................................................. 57References............................................................................................................................................................................... 63},
author = {M. Kucharzewski, M. Kuczma},
keywords = {vector and tensor calculus},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Basic concepts of the theory of geometric objects},
url = {http://eudml.org/doc/268445},
year = {1964},
}

TY - BOOK
AU - M. Kucharzewski
AU - M. Kuczma
TI - Basic concepts of the theory of geometric objects
PY - 1964
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - ContentsIntroduction............................................................................................................................................................................... 3§ 1. Historical development of the concept of a geometric object..................................................................................4§ 2. Manifold, coordinate system, transformations of the coordinate system............................................................. 7§ 3. Group, pseudogroup, groupoid.................................................................................................................................... 9§ 4. Wundheiler's definition of a geometric object........................................................................................................... 15§ 5. Special geometric objects............................................................................................................................................. 18§ 6. Abstract geometric object. The Haantjes-Laman definition of a geometric object............................................. 24§ 7. Classification of geometric objects.............................................................................................................................. 28§ 8. Equivalence of geometric objects................................................................................................................................ 39§ 9. Fibres of equivalent geometric objects....................................................................................................................... 42§ 10. Concomitants................................................................................................................................................................. 47§ 11. Algebra of geometric objects...................................................................................................................................... 54§ 12. Differential concomitants............................................................................................................................................. 57References............................................................................................................................................................................... 63
LA - eng
KW - vector and tensor calculus
UR - http://eudml.org/doc/268445
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.