Categories, groupoids, pseudogroups and analytical structures

W. Waliszewski

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1965

Abstract

top
CONTENTSIntroduction................................................................................................................................................. 3I. TERMS AND NOTATION....................................................................................................................... 5II. GROUPOIDS AND CATEGORIES...................................................................................................... 61. The notion of groupoid......................................................................................................................... 62. Equivalence of the definition of groupoid to the definition of Ehresmann.................................. 83. Relationship between l.lio notion of an liliroHiminn groupoid and the notion of a Brandt,groupoid...................................................................................................................................................... 94. Categories of functions and representation theorems................................................................. 125. The algebraic product of sets and the closure of a sot in the multiplicative system............... 15III. THE RELATIONSHIP BETWEEN A GOŁĄB PSEUDOOROUP AND AN EHRESMANN GROUPOID............................................................................................................... 166. The notions of a Gołąb pseudogroup and of a functional element............................................ 167. The isomorphism of an arbitrary Ehresmann groupoid and a Gołąbpseudogroup of a certain type. Groupoids of functional elements................................................. 18IV. GENERATING IN GOŁĄB PSEUDOGROUPS AND SOME PROPERTIES OF A SET OF FUNCTIONS.............................................................................................................................. 208. Some operations with sets of functions........................................................................................... 219. A quasi-order of the family of all subsets of the set, L (X)............................................................. 2410. Determining a pseudogroups with the aid of sets of functional elements............................. 2611. The problom of the existence of the smallest pseudogroup including a given setof local homeomorphisms...................................................................................................................... 29V. SEMI-PSEUDOGROUPS AND A GENERALIZATION OP THE NOTION OF AN ANALYTICAL STRUCTURE................................................................................................................ 3312. Semi-pseudogroups......................................................................................................................... 3313. The notion of an analytical structure............................................................................................... 35References................................................................................................................................................. 39

How to cite

top

W. Waliszewski. Categories, groupoids, pseudogroups and analytical structures. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1965. <http://eudml.org/doc/268463>.

@book{W1965,
abstract = {CONTENTSIntroduction................................................................................................................................................. 3I. TERMS AND NOTATION....................................................................................................................... 5II. GROUPOIDS AND CATEGORIES...................................................................................................... 61. The notion of groupoid......................................................................................................................... 62. Equivalence of the definition of groupoid to the definition of Ehresmann.................................. 83. Relationship between l.lio notion of an liliroHiminn groupoid and the notion of a Brandt,groupoid...................................................................................................................................................... 94. Categories of functions and representation theorems................................................................. 125. The algebraic product of sets and the closure of a sot in the multiplicative system............... 15III. THE RELATIONSHIP BETWEEN A GOŁĄB PSEUDOOROUP AND AN EHRESMANN GROUPOID............................................................................................................... 166. The notions of a Gołąb pseudogroup and of a functional element............................................ 167. The isomorphism of an arbitrary Ehresmann groupoid and a Gołąbpseudogroup of a certain type. Groupoids of functional elements................................................. 18IV. GENERATING IN GOŁĄB PSEUDOGROUPS AND SOME PROPERTIES OF A SET OF FUNCTIONS.............................................................................................................................. 208. Some operations with sets of functions........................................................................................... 219. A quasi-order of the family of all subsets of the set, L (X)............................................................. 2410. Determining a pseudogroups with the aid of sets of functional elements............................. 2611. The problom of the existence of the smallest pseudogroup including a given setof local homeomorphisms...................................................................................................................... 29V. SEMI-PSEUDOGROUPS AND A GENERALIZATION OP THE NOTION OF AN ANALYTICAL STRUCTURE................................................................................................................ 3312. Semi-pseudogroups......................................................................................................................... 3313. The notion of an analytical structure............................................................................................... 35References................................................................................................................................................. 39},
author = {W. Waliszewski},
keywords = {topology},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Categories, groupoids, pseudogroups and analytical structures},
url = {http://eudml.org/doc/268463},
year = {1965},
}

TY - BOOK
AU - W. Waliszewski
TI - Categories, groupoids, pseudogroups and analytical structures
PY - 1965
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction................................................................................................................................................. 3I. TERMS AND NOTATION....................................................................................................................... 5II. GROUPOIDS AND CATEGORIES...................................................................................................... 61. The notion of groupoid......................................................................................................................... 62. Equivalence of the definition of groupoid to the definition of Ehresmann.................................. 83. Relationship between l.lio notion of an liliroHiminn groupoid and the notion of a Brandt,groupoid...................................................................................................................................................... 94. Categories of functions and representation theorems................................................................. 125. The algebraic product of sets and the closure of a sot in the multiplicative system............... 15III. THE RELATIONSHIP BETWEEN A GOŁĄB PSEUDOOROUP AND AN EHRESMANN GROUPOID............................................................................................................... 166. The notions of a Gołąb pseudogroup and of a functional element............................................ 167. The isomorphism of an arbitrary Ehresmann groupoid and a Gołąbpseudogroup of a certain type. Groupoids of functional elements................................................. 18IV. GENERATING IN GOŁĄB PSEUDOGROUPS AND SOME PROPERTIES OF A SET OF FUNCTIONS.............................................................................................................................. 208. Some operations with sets of functions........................................................................................... 219. A quasi-order of the family of all subsets of the set, L (X)............................................................. 2410. Determining a pseudogroups with the aid of sets of functional elements............................. 2611. The problom of the existence of the smallest pseudogroup including a given setof local homeomorphisms...................................................................................................................... 29V. SEMI-PSEUDOGROUPS AND A GENERALIZATION OP THE NOTION OF AN ANALYTICAL STRUCTURE................................................................................................................ 3312. Semi-pseudogroups......................................................................................................................... 3313. The notion of an analytical structure............................................................................................... 35References................................................................................................................................................. 39
LA - eng
KW - topology
UR - http://eudml.org/doc/268463
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.