Formally self-referential propositions for cut free classical analysis and related systems

G. Kreisel; G. Takeuti

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1974

Abstract

top
CONTENTSIntroduction............................................................................................................................................................................................................ 5  I. Results on self-referential propositions............................................................................................................................. 11    1. Definitions of some principal metamathematical notions................................................................... 11    2. Results concerning the notions of Section 1 for cut free classical    analysis and related systems........................................................................................................................ 16  II. Formalized metamathematics of C F A.............................................................................................................................. 24    1. Completeness and reflection principles for closed 0 0 q 0 formulae..................... 24    2. Demonstrable instances of the normal form theorem......................................................................... 28    3. Demonstrable instances of deductive equivalence and of the fundamental conjecture............... 32  III. Discussion of some general issues raised in the introduction................................................................................... 34    1. Hilbert’s programme.................................................................................................................................... 34    2. C F A and the structure of proofs in analysis.......................................................................................... 36    3. Henkin’s problem [6] and the relation of synonymity............................................................................. 41  Appendix. Addenda to the literature......................................................................................................................................... 44    1. Jeroslow’s variant of literal Gödel sentences......................................................................................... 44    2. Löb’s theorem............................................................................................................................................... 44    3. Rosser variants............................................................................................................................................ 46  References.................................................................................................................................................................................. 49

How to cite

top

G. Kreisel, and G. Takeuti. Formally self-referential propositions for cut free classical analysis and related systems. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1974. <http://eudml.org/doc/268467>.

@book{G1974,
abstract = {CONTENTSIntroduction............................................................................................................................................................................................................ 5  I. Results on self-referential propositions............................................................................................................................. 11    1. Definitions of some principal metamathematical notions................................................................... 11    2. Results concerning the notions of Section 1 for cut free classical    analysis and related systems........................................................................................................................ 16  II. Formalized metamathematics of C F A.............................................................................................................................. 24    1. Completeness and reflection principles for closed $∑^0_0$ ∪ $∑^0_q$ formulae..................... 24    2. Demonstrable instances of the normal form theorem......................................................................... 28    3. Demonstrable instances of deductive equivalence and of the fundamental conjecture............... 32  III. Discussion of some general issues raised in the introduction................................................................................... 34    1. Hilbert’s programme.................................................................................................................................... 34    2. C F A and the structure of proofs in analysis.......................................................................................... 36    3. Henkin’s problem [6] and the relation of synonymity............................................................................. 41  Appendix. Addenda to the literature......................................................................................................................................... 44    1. Jeroslow’s variant of literal Gödel sentences......................................................................................... 44    2. Löb’s theorem............................................................................................................................................... 44    3. Rosser variants............................................................................................................................................ 46  References.................................................................................................................................................................................. 49},
author = {G. Kreisel, G. Takeuti},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Formally self-referential propositions for cut free classical analysis and related systems},
url = {http://eudml.org/doc/268467},
year = {1974},
}

TY - BOOK
AU - G. Kreisel
AU - G. Takeuti
TI - Formally self-referential propositions for cut free classical analysis and related systems
PY - 1974
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction............................................................................................................................................................................................................ 5  I. Results on self-referential propositions............................................................................................................................. 11    1. Definitions of some principal metamathematical notions................................................................... 11    2. Results concerning the notions of Section 1 for cut free classical    analysis and related systems........................................................................................................................ 16  II. Formalized metamathematics of C F A.............................................................................................................................. 24    1. Completeness and reflection principles for closed $∑^0_0$ ∪ $∑^0_q$ formulae..................... 24    2. Demonstrable instances of the normal form theorem......................................................................... 28    3. Demonstrable instances of deductive equivalence and of the fundamental conjecture............... 32  III. Discussion of some general issues raised in the introduction................................................................................... 34    1. Hilbert’s programme.................................................................................................................................... 34    2. C F A and the structure of proofs in analysis.......................................................................................... 36    3. Henkin’s problem [6] and the relation of synonymity............................................................................. 41  Appendix. Addenda to the literature......................................................................................................................................... 44    1. Jeroslow’s variant of literal Gödel sentences......................................................................................... 44    2. Löb’s theorem............................................................................................................................................... 44    3. Rosser variants............................................................................................................................................ 46  References.................................................................................................................................................................................. 49
LA - eng
UR - http://eudml.org/doc/268467
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.