Duality theorems for Kantorovich-Rubinstein and Wasserstein functionals

S. T. Rachev; R. M.

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1990

Abstract

top
CONTENTS§0. Introduction...................................................................................................................................5§1. Notation and terminology..............................................................................................................6§2. A generalization of the Kantorovich-Rubinstein theorem..............................................................8§3. Application: explicit representations for a class of probability metrics.........................................14§4. Topology of the Kantorovich-Rubinstein norm............................................................................18§5. Dual representation for the Wasserstein functional....................................................................21§6. Comparison of Wasserstein functional and Kantorovich-Rubinstein norm; completeness..........27§7. Convergence of empirical measures; results of Fortet-Mourier type..........................................30§8. The convex set of optimal measures..........................................................................................32References......................................................................................................................................34

How to cite

top

S. T. Rachev, and R. M.. Duality theorems for Kantorovich-Rubinstein and Wasserstein functionals. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1990. <http://eudml.org/doc/268473>.

@book{S1990,
abstract = {CONTENTS§0. Introduction...................................................................................................................................5§1. Notation and terminology..............................................................................................................6§2. A generalization of the Kantorovich-Rubinstein theorem..............................................................8§3. Application: explicit representations for a class of probability metrics.........................................14§4. Topology of the Kantorovich-Rubinstein norm............................................................................18§5. Dual representation for the Wasserstein functional....................................................................21§6. Comparison of Wasserstein functional and Kantorovich-Rubinstein norm; completeness..........27§7. Convergence of empirical measures; results of Fortet-Mourier type..........................................30§8. The convex set of optimal measures..........................................................................................32References......................................................................................................................................34},
author = {S. T. Rachev, R. M.},
keywords = {probability metrics; mass transfer problem; Kantorovich-Rubinstein duality theorem; linear programming result; Wasserstein functional; compactness properties},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Duality theorems for Kantorovich-Rubinstein and Wasserstein functionals},
url = {http://eudml.org/doc/268473},
year = {1990},
}

TY - BOOK
AU - S. T. Rachev
AU - R. M.
TI - Duality theorems for Kantorovich-Rubinstein and Wasserstein functionals
PY - 1990
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTS§0. Introduction...................................................................................................................................5§1. Notation and terminology..............................................................................................................6§2. A generalization of the Kantorovich-Rubinstein theorem..............................................................8§3. Application: explicit representations for a class of probability metrics.........................................14§4. Topology of the Kantorovich-Rubinstein norm............................................................................18§5. Dual representation for the Wasserstein functional....................................................................21§6. Comparison of Wasserstein functional and Kantorovich-Rubinstein norm; completeness..........27§7. Convergence of empirical measures; results of Fortet-Mourier type..........................................30§8. The convex set of optimal measures..........................................................................................32References......................................................................................................................................34
LA - eng
KW - probability metrics; mass transfer problem; Kantorovich-Rubinstein duality theorem; linear programming result; Wasserstein functional; compactness properties
UR - http://eudml.org/doc/268473
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.