A. H. Stone. Non-separable Borel sets. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1962. <http://eudml.org/doc/268474>.
@book{A1962, abstract = {CONTENTS1. Introduction.................................................................................. 32. Baire spaces................................................................................ 53. The basic theorem..................................................................... 94. Cardinality properties; invariance of weight........................... 165. Classification of absolute Borel sets..................................... 226. Characterizations....................................................................... 267. Borel isomorphism and generalized homeomorphism..... 298. k-analytic sets............................................................................. 44References...................................................................................... 39}, author = {A. H. Stone}, keywords = {topology}, language = {eng}, location = {Warszawa}, publisher = {Instytut Matematyczny Polskiej Akademi Nauk}, title = {Non-separable Borel sets}, url = {http://eudml.org/doc/268474}, year = {1962}, }
TY - BOOK AU - A. H. Stone TI - Non-separable Borel sets PY - 1962 CY - Warszawa PB - Instytut Matematyczny Polskiej Akademi Nauk AB - CONTENTS1. Introduction.................................................................................. 32. Baire spaces................................................................................ 53. The basic theorem..................................................................... 94. Cardinality properties; invariance of weight........................... 165. Classification of absolute Borel sets..................................... 226. Characterizations....................................................................... 267. Borel isomorphism and generalized homeomorphism..... 298. k-analytic sets............................................................................. 44References...................................................................................... 39 LA - eng KW - topology UR - http://eudml.org/doc/268474 ER -