Structure properties of D-R spaces
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1981
Access Full Book
topAbstract
topHow to cite
topHartmut von Trotha. Structure properties of D-R spaces. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1981. <http://eudml.org/doc/268475>.
@book{HartmutvonTrotha1981,
abstract = {CONTENTSIntroduction................................................................................................................................... 5 Notations.......................................................................................................................... 5§ 1. Preliminaries........................................................................................................................ 6 1. Right invertible operators.................................................................................................. 6 2. D-R vector spaces.............................................................................................................. 7 3. Basic types of D-R spaces............................................................................................... 7 3.1. Examples............................................................................................................. 7 4. Subspaces.......................................................................................................................... 8 5. Homomorphisms............................................................................................................... 8 5.1 Quotient spaces and homomorphisms......................................................... 10§2. The general Taylor theorem............................................................................................... 11 1. The elementary Taylor theorem....................................................................................... 11 1.1. Bands of subspaces....................................................................................... 12 2. The general Taylor theorem............................................................................................. 14§ 3. Structure elements of D-R spaces................................................................................... 17 1. The simple Taylor formula................................................................................................ 17 2. Distinguished subspaces and subspace chains....................................................... 18 2.1. Canonical subspaces of a D-R space........................................................ 18 2.2. The space $D_i$............................................................................................. 19 2.3. The space S...................................................................................................... 19 2.4. The space Q..................................................................................................... 20 3. Extension of the domain of D........................................................................................... 21 4. The structure chain............................................................................................................ 22 5. Components and formal component series................................................................ 23 6. Examples............................................................................................................................. 25§ 4. The D-R homomorphism theorem.................................................................................. 27 1. The D-R reference space $X_0$..................................................................................... 27 1.1. X(Z) as a $D_0-R_0$ space with $D_D_0$ = X(Z)................................... 28 1.2. The $d_0$-convergence................................................................................ 28 1.3. The Volterra property of $X_0$ and eigenspaces of $D_0$...................... 31 2. $D_D_0$$\UnimplementedOperator $$X_0(Z)$.......................................................................... 32 3. The D-R homomorphism theorem................................................................................. 33 3.1. Eigenvectors of D and R................................................................................. 35 4. The D-R homomorphism theorem for $D_D_0$$\UnimplementedOperator $ X.................. 35 5. $d_0$-topology................................................................................................................... 38},
author = {Hartmut von Trotha},
keywords = {linear spaces with right invertible operators; D-R space; reference space},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Structure properties of D-R spaces},
url = {http://eudml.org/doc/268475},
year = {1981},
}
TY - BOOK
AU - Hartmut von Trotha
TI - Structure properties of D-R spaces
PY - 1981
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction................................................................................................................................... 5 Notations.......................................................................................................................... 5§ 1. Preliminaries........................................................................................................................ 6 1. Right invertible operators.................................................................................................. 6 2. D-R vector spaces.............................................................................................................. 7 3. Basic types of D-R spaces............................................................................................... 7 3.1. Examples............................................................................................................. 7 4. Subspaces.......................................................................................................................... 8 5. Homomorphisms............................................................................................................... 8 5.1 Quotient spaces and homomorphisms......................................................... 10§2. The general Taylor theorem............................................................................................... 11 1. The elementary Taylor theorem....................................................................................... 11 1.1. Bands of subspaces....................................................................................... 12 2. The general Taylor theorem............................................................................................. 14§ 3. Structure elements of D-R spaces................................................................................... 17 1. The simple Taylor formula................................................................................................ 17 2. Distinguished subspaces and subspace chains....................................................... 18 2.1. Canonical subspaces of a D-R space........................................................ 18 2.2. The space $D_i$............................................................................................. 19 2.3. The space S...................................................................................................... 19 2.4. The space Q..................................................................................................... 20 3. Extension of the domain of D........................................................................................... 21 4. The structure chain............................................................................................................ 22 5. Components and formal component series................................................................ 23 6. Examples............................................................................................................................. 25§ 4. The D-R homomorphism theorem.................................................................................. 27 1. The D-R reference space $X_0$..................................................................................... 27 1.1. X(Z) as a $D_0-R_0$ space with $D_D_0$ = X(Z)................................... 28 1.2. The $d_0$-convergence................................................................................ 28 1.3. The Volterra property of $X_0$ and eigenspaces of $D_0$...................... 31 2. $D_D_0$$\UnimplementedOperator $$X_0(Z)$.......................................................................... 32 3. The D-R homomorphism theorem................................................................................. 33 3.1. Eigenvectors of D and R................................................................................. 35 4. The D-R homomorphism theorem for $D_D_0$$\UnimplementedOperator $ X.................. 35 5. $d_0$-topology................................................................................................................... 38
LA - eng
KW - linear spaces with right invertible operators; D-R space; reference space
UR - http://eudml.org/doc/268475
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.