# Homeomorphisms of products of subsets of the Cantor discontinuum

- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1988

## Access Full Book

top## Abstract

top## How to cite

topVěra Trnková. Homeomorphisms of products of subsets of the Cantor discontinuum. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1988. <http://eudml.org/doc/268478>.

@book{VěraTrnková1988,

abstract = {CONTENTSI. Introduction and the Main Theorem................................................5II. The basic construction and the scheme of the proof.....................8III. The construction of the spaces $X_\{k\}$, k ∈ ω..........................13IV. The operations σ, m, i for products of spaces............................18V. The recognizing of A from the topology of Y(A)...........................26VI. Concluding remarks...................................................................34References.....................................................................................36},

author = {Věra Trnková},

keywords = {representations of commutative semigroups as classes of topological spaces; countable commutative semigroups; finitely productive; closed under countable coproducts; -subsets; -subsets; Cantor discontinuum; countable, commutative, ordered semigroup; retract},

language = {eng},

location = {Warszawa},

publisher = {Instytut Matematyczny Polskiej Akademi Nauk},

title = {Homeomorphisms of products of subsets of the Cantor discontinuum},

url = {http://eudml.org/doc/268478},

year = {1988},

}

TY - BOOK

AU - Věra Trnková

TI - Homeomorphisms of products of subsets of the Cantor discontinuum

PY - 1988

CY - Warszawa

PB - Instytut Matematyczny Polskiej Akademi Nauk

AB - CONTENTSI. Introduction and the Main Theorem................................................5II. The basic construction and the scheme of the proof.....................8III. The construction of the spaces $X_{k}$, k ∈ ω..........................13IV. The operations σ, m, i for products of spaces............................18V. The recognizing of A from the topology of Y(A)...........................26VI. Concluding remarks...................................................................34References.....................................................................................36

LA - eng

KW - representations of commutative semigroups as classes of topological spaces; countable commutative semigroups; finitely productive; closed under countable coproducts; -subsets; -subsets; Cantor discontinuum; countable, commutative, ordered semigroup; retract

UR - http://eudml.org/doc/268478

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.