Homeomorphisms of products of subsets of the Cantor discontinuum
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1988
Access Full Book
topAbstract
topHow to cite
topVěra Trnková. Homeomorphisms of products of subsets of the Cantor discontinuum. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1988. <http://eudml.org/doc/268478>.
@book{VěraTrnková1988,
abstract = {CONTENTSI. Introduction and the Main Theorem................................................5II. The basic construction and the scheme of the proof.....................8III. The construction of the spaces $X_\{k\}$, k ∈ ω..........................13IV. The operations σ, m, i for products of spaces............................18V. The recognizing of A from the topology of Y(A)...........................26VI. Concluding remarks...................................................................34References.....................................................................................36},
author = {Věra Trnková},
keywords = {representations of commutative semigroups as classes of topological spaces; countable commutative semigroups; finitely productive; closed under countable coproducts; -subsets; -subsets; Cantor discontinuum; countable, commutative, ordered semigroup; retract},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Homeomorphisms of products of subsets of the Cantor discontinuum},
url = {http://eudml.org/doc/268478},
year = {1988},
}
TY - BOOK
AU - Věra Trnková
TI - Homeomorphisms of products of subsets of the Cantor discontinuum
PY - 1988
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSI. Introduction and the Main Theorem................................................5II. The basic construction and the scheme of the proof.....................8III. The construction of the spaces $X_{k}$, k ∈ ω..........................13IV. The operations σ, m, i for products of spaces............................18V. The recognizing of A from the topology of Y(A)...........................26VI. Concluding remarks...................................................................34References.....................................................................................36
LA - eng
KW - representations of commutative semigroups as classes of topological spaces; countable commutative semigroups; finitely productive; closed under countable coproducts; -subsets; -subsets; Cantor discontinuum; countable, commutative, ordered semigroup; retract
UR - http://eudml.org/doc/268478
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.