Symmetric function spaces on atomless probability spaces

Anatoliĭ M. Plichko; Mikhail M. Popov

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1990

Abstract

top
CONTENTSIntroduction....................................................................................................................................51. Sequences of elements in separable Banach spaces...............................................................82. Maharam's theorem.................................................................................................................163. Symmetric function spaces......................................................................................................214. Bases in nonseparable symmetric spaces...............................................................................285. Uncountable unconditional basic sequences and unconditional decompositions....................336. Characters of compact Abelian groups....................................................................................407. Almost periodic functions.........................................................................................................468. Narrow operators.....................................................................................................................539. Narrow operators in L_p(μ), 1 < p < ∞.....................................................................................6010. Rich subspaces.....................................................................................................................7011. Isomorphic classification of L_p(μ)-spaces............................................................................74References..................................................................................................................................821985 Mathematics Subject Classification: 46E30

How to cite

top

Anatoliĭ M. Plichko, and Mikhail M. Popov. Symmetric function spaces on atomless probability spaces. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1990. <http://eudml.org/doc/268484>.

@book{AnatoliĭM1990,
abstract = {CONTENTSIntroduction....................................................................................................................................51. Sequences of elements in separable Banach spaces...............................................................82. Maharam's theorem.................................................................................................................163. Symmetric function spaces......................................................................................................214. Bases in nonseparable symmetric spaces...............................................................................285. Uncountable unconditional basic sequences and unconditional decompositions....................336. Characters of compact Abelian groups....................................................................................407. Almost periodic functions.........................................................................................................468. Narrow operators.....................................................................................................................539. Narrow operators in L\_p(μ), 1 < p < ∞.....................................................................................6010. Rich subspaces.....................................................................................................................7011. Isomorphic classification of L\_p(μ)-spaces............................................................................74References..................................................................................................................................821985 Mathematics Subject Classification: 46E30},
author = {Anatoliĭ M. Plichko, Mikhail M. Popov},
keywords = {Maharam's theorem; symmetric function space over an atomless probability space; Bases in nonseparable symmetric spaces; Walsh system; Enflo- Rosenthal-Cesàro basis; Boyd indexes; Uncountable unconditional basis sequences; unconditional decompositions; absolutely continuous norm; unconditional projection decomposition; Characters of compact Abelian groups; Almost periodic functions; Basicovitch spaces; Narrow operators; norm-sign-preserving operators; Rich subspaces; Isomorphic classification of -spaces; Maharam sets; Banach-Mazur distance},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Symmetric function spaces on atomless probability spaces},
url = {http://eudml.org/doc/268484},
year = {1990},
}

TY - BOOK
AU - Anatoliĭ M. Plichko
AU - Mikhail M. Popov
TI - Symmetric function spaces on atomless probability spaces
PY - 1990
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction....................................................................................................................................51. Sequences of elements in separable Banach spaces...............................................................82. Maharam's theorem.................................................................................................................163. Symmetric function spaces......................................................................................................214. Bases in nonseparable symmetric spaces...............................................................................285. Uncountable unconditional basic sequences and unconditional decompositions....................336. Characters of compact Abelian groups....................................................................................407. Almost periodic functions.........................................................................................................468. Narrow operators.....................................................................................................................539. Narrow operators in L_p(μ), 1 < p < ∞.....................................................................................6010. Rich subspaces.....................................................................................................................7011. Isomorphic classification of L_p(μ)-spaces............................................................................74References..................................................................................................................................821985 Mathematics Subject Classification: 46E30
LA - eng
KW - Maharam's theorem; symmetric function space over an atomless probability space; Bases in nonseparable symmetric spaces; Walsh system; Enflo- Rosenthal-Cesàro basis; Boyd indexes; Uncountable unconditional basis sequences; unconditional decompositions; absolutely continuous norm; unconditional projection decomposition; Characters of compact Abelian groups; Almost periodic functions; Basicovitch spaces; Narrow operators; norm-sign-preserving operators; Rich subspaces; Isomorphic classification of -spaces; Maharam sets; Banach-Mazur distance
UR - http://eudml.org/doc/268484
ER -

Citations in EuDML Documents

top
  1. Mikhail Popov, Evgenii Semenov, Diana Vatsek, Some problems on narrow operators on function spaces
  2. Violetta Kholomenyuk, Volodymyr Mykhaylyuk, Mikhail Popov, On isomorphisms of some Köthe function F-spaces
  3. Irina Krasikova, Miguel Martín, Javier Merí, Vladimir Mykhaylyuk, Mikhail Popov, On order structure and operators in L ∞(μ)
  4. Marat Pliev, Narrow operators on lattice-normed spaces
  5. A. Plichko, A. Razenkov, On three problems from the Scottish Book connected with orthogonal systems

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.