Symmetric function spaces on atomless probability spaces
Anatoliĭ M. Plichko; Mikhail M. Popov
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1990
Access Full Book
topAbstract
topHow to cite
topAnatoliĭ M. Plichko, and Mikhail M. Popov. Symmetric function spaces on atomless probability spaces. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1990. <http://eudml.org/doc/268484>.
@book{AnatoliĭM1990,
abstract = {CONTENTSIntroduction....................................................................................................................................51. Sequences of elements in separable Banach spaces...............................................................82. Maharam's theorem.................................................................................................................163. Symmetric function spaces......................................................................................................214. Bases in nonseparable symmetric spaces...............................................................................285. Uncountable unconditional basic sequences and unconditional decompositions....................336. Characters of compact Abelian groups....................................................................................407. Almost periodic functions.........................................................................................................468. Narrow operators.....................................................................................................................539. Narrow operators in L\_p(μ), 1 < p < ∞.....................................................................................6010. Rich subspaces.....................................................................................................................7011. Isomorphic classification of L\_p(μ)-spaces............................................................................74References..................................................................................................................................821985 Mathematics Subject Classification: 46E30},
author = {Anatoliĭ M. Plichko, Mikhail M. Popov},
keywords = {Maharam's theorem; symmetric function space over an atomless probability space; Bases in nonseparable symmetric spaces; Walsh system; Enflo- Rosenthal-Cesàro basis; Boyd indexes; Uncountable unconditional basis sequences; unconditional decompositions; absolutely continuous norm; unconditional projection decomposition; Characters of compact Abelian groups; Almost periodic functions; Basicovitch spaces; Narrow operators; norm-sign-preserving operators; Rich subspaces; Isomorphic classification of -spaces; Maharam sets; Banach-Mazur distance},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Symmetric function spaces on atomless probability spaces},
url = {http://eudml.org/doc/268484},
year = {1990},
}
TY - BOOK
AU - Anatoliĭ M. Plichko
AU - Mikhail M. Popov
TI - Symmetric function spaces on atomless probability spaces
PY - 1990
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction....................................................................................................................................51. Sequences of elements in separable Banach spaces...............................................................82. Maharam's theorem.................................................................................................................163. Symmetric function spaces......................................................................................................214. Bases in nonseparable symmetric spaces...............................................................................285. Uncountable unconditional basic sequences and unconditional decompositions....................336. Characters of compact Abelian groups....................................................................................407. Almost periodic functions.........................................................................................................468. Narrow operators.....................................................................................................................539. Narrow operators in L_p(μ), 1 < p < ∞.....................................................................................6010. Rich subspaces.....................................................................................................................7011. Isomorphic classification of L_p(μ)-spaces............................................................................74References..................................................................................................................................821985 Mathematics Subject Classification: 46E30
LA - eng
KW - Maharam's theorem; symmetric function space over an atomless probability space; Bases in nonseparable symmetric spaces; Walsh system; Enflo- Rosenthal-Cesàro basis; Boyd indexes; Uncountable unconditional basis sequences; unconditional decompositions; absolutely continuous norm; unconditional projection decomposition; Characters of compact Abelian groups; Almost periodic functions; Basicovitch spaces; Narrow operators; norm-sign-preserving operators; Rich subspaces; Isomorphic classification of -spaces; Maharam sets; Banach-Mazur distance
UR - http://eudml.org/doc/268484
ER -
Citations in EuDML Documents
top- Mikhail Popov, Evgenii Semenov, Diana Vatsek, Some problems on narrow operators on function spaces
- Violetta Kholomenyuk, Volodymyr Mykhaylyuk, Mikhail Popov, On isomorphisms of some Köthe function F-spaces
- Irina Krasikova, Miguel Martín, Javier Merí, Vladimir Mykhaylyuk, Mikhail Popov, On order structure and operators in L ∞(μ)
- Marat Pliev, Narrow operators on lattice-normed spaces
- A. Plichko, A. Razenkov, On three problems from the Scottish Book connected with orthogonal systems
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.