Chebyshevian splines

Zygmunt Wronicz

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1990

Abstract

top
CONTENTSIntroduction...........................................................................................................5I.   Canonical complete Chebyshev systems   1. Canonical complete Chebyshev systems.......................................................7   2. Interpolation by generalized polynomials and divided differences................12   3. The Markov inequality for generalized polynomials......................................16II.   Chebyshevian splines   1. Basic properties...........................................................................................18   2. B-splines......................................................................................................21   3. The Marsden identity...................................................................................28   4. De Boor's inequalities..................................................................................32   5. A recurrence relation for B-splines...............................................................37   6. Bounds on zeros..........................................................................................41III.   Spline operators   1. Orthogonal spline projections .....................................................................46   2. Biorthogonal systems..................................................................................49   3. Equivalence of spline bases .......................................................................57   4. Positive spline operators and orthogonal splines .......................................60IV.    Generalized moduli of smoothness and approximation by splines   1. Generalized moduli of smoothness .............................................................64   2. Generalization of the Whitney Theorem.......................................................70   3. Best approximation by splines......................................................................72   4. The Bernstein type inequality for splines ....................................................77V.   Applications to approximation of analytic functions   1. Approximation by analytic splines................................................................78   2. Biorthogonal systems in the complex space A(D)........................................83   3. Systems conjugate to biorthogonal spline systems......................................86References.........................................................................................................94List of symbols....................................................................................................981985 Mathematics Subject Classification: 41A15, 46E15, 46B15

How to cite

top

Zygmunt Wronicz. Chebyshevian splines. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1990. <http://eudml.org/doc/268497>.

@book{ZygmuntWronicz1990,
abstract = {CONTENTSIntroduction...........................................................................................................5I.   Canonical complete Chebyshev systems   1. Canonical complete Chebyshev systems.......................................................7   2. Interpolation by generalized polynomials and divided differences................12   3. The Markov inequality for generalized polynomials......................................16II.   Chebyshevian splines   1. Basic properties...........................................................................................18   2. B-splines......................................................................................................21   3. The Marsden identity...................................................................................28   4. De Boor's inequalities..................................................................................32   5. A recurrence relation for B-splines...............................................................37   6. Bounds on zeros..........................................................................................41III.   Spline operators   1. Orthogonal spline projections .....................................................................46   2. Biorthogonal systems..................................................................................49   3. Equivalence of spline bases .......................................................................57   4. Positive spline operators and orthogonal splines .......................................60IV.    Generalized moduli of smoothness and approximation by splines   1. Generalized moduli of smoothness .............................................................64   2. Generalization of the Whitney Theorem.......................................................70   3. Best approximation by splines......................................................................72   4. The Bernstein type inequality for splines ....................................................77V.   Applications to approximation of analytic functions   1. Approximation by analytic splines................................................................78   2. Biorthogonal systems in the complex space A(D)........................................83   3. Systems conjugate to biorthogonal spline systems......................................86References.........................................................................................................94List of symbols....................................................................................................981985 Mathematics Subject Classification: 41A15, 46E15, 46B15},
author = {Zygmunt Wronicz},
keywords = {extended complete Chebyshev system; Canonical complete Chebyshev systems; Newton interpolation formula; Markov inequality; Chebyshevian splines; B-splines; Marsden identity; de Boor inequalities; orthogonal spline projections; modulus of smoothness},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Chebyshevian splines},
url = {http://eudml.org/doc/268497},
year = {1990},
}

TY - BOOK
AU - Zygmunt Wronicz
TI - Chebyshevian splines
PY - 1990
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction...........................................................................................................5I.   Canonical complete Chebyshev systems   1. Canonical complete Chebyshev systems.......................................................7   2. Interpolation by generalized polynomials and divided differences................12   3. The Markov inequality for generalized polynomials......................................16II.   Chebyshevian splines   1. Basic properties...........................................................................................18   2. B-splines......................................................................................................21   3. The Marsden identity...................................................................................28   4. De Boor's inequalities..................................................................................32   5. A recurrence relation for B-splines...............................................................37   6. Bounds on zeros..........................................................................................41III.   Spline operators   1. Orthogonal spline projections .....................................................................46   2. Biorthogonal systems..................................................................................49   3. Equivalence of spline bases .......................................................................57   4. Positive spline operators and orthogonal splines .......................................60IV.    Generalized moduli of smoothness and approximation by splines   1. Generalized moduli of smoothness .............................................................64   2. Generalization of the Whitney Theorem.......................................................70   3. Best approximation by splines......................................................................72   4. The Bernstein type inequality for splines ....................................................77V.   Applications to approximation of analytic functions   1. Approximation by analytic splines................................................................78   2. Biorthogonal systems in the complex space A(D)........................................83   3. Systems conjugate to biorthogonal spline systems......................................86References.........................................................................................................94List of symbols....................................................................................................981985 Mathematics Subject Classification: 41A15, 46E15, 46B15
LA - eng
KW - extended complete Chebyshev system; Canonical complete Chebyshev systems; Newton interpolation formula; Markov inequality; Chebyshevian splines; B-splines; Marsden identity; de Boor inequalities; orthogonal spline projections; modulus of smoothness
UR - http://eudml.org/doc/268497
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.