The duality theorems. Cyclic representations Langlands conjectures

Janusz Szmidt

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1980

Abstract

top
CONTENTSIntroduction...................................................................................................... 5Chapter I. Invariant kernels on locally compact groups and cyclicrepresentations....................................................................................................... 8 1. Distributions on topological groups.......................................... 8 2. Invariant kernels and cyclic representations.................................... 9 3. Generalized cyclic vectors. An extension of the Gelfand-Raikov correspondence......................................................................................... 12 4. Cyclicity of induced representations.................................................. 15Chapter II. Duality theorems for induced representationswith elliptic differential operator............................................................................. 17 1. Induced representations............................................................... 17 2. Invariant differential operators.............................................................. 19 3. The general duality theorem for induced representations.............. 20 4. Duality theorems with elliptic differential operator............................ 22 5. The case where G/Γ is not compact.................................................... 30Chapter III. The duality theorem and Langlands conjectures................. 30 1. The discrete series representations........................................... 31 2. The Langlands conjectures.................................................................. 32Chapter IV. Dirac operator and the discrete classes.Hotta and Parthasarathy theorem......................................................................... 30 1. Dirac operator.................................................................................. 39 2. The realization of the discrete series representations.................... 42 3. The multiplicity theorem......................................................................... 45References........................................................................................................ 46

How to cite

top

Janusz Szmidt. The duality theorems. Cyclic representations Langlands conjectures. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1980. <http://eudml.org/doc/268507>.

@book{JanuszSzmidt1980,
abstract = {CONTENTSIntroduction...................................................................................................... 5Chapter I. Invariant kernels on locally compact groups and cyclicrepresentations....................................................................................................... 8 1. Distributions on topological groups.......................................... 8 2. Invariant kernels and cyclic representations.................................... 9 3. Generalized cyclic vectors. An extension of the Gelfand-Raikov correspondence......................................................................................... 12 4. Cyclicity of induced representations.................................................. 15Chapter II. Duality theorems for induced representationswith elliptic differential operator............................................................................. 17 1. Induced representations............................................................... 17 2. Invariant differential operators.............................................................. 19 3. The general duality theorem for induced representations.............. 20 4. Duality theorems with elliptic differential operator............................ 22 5. The case where G/Γ is not compact.................................................... 30Chapter III. The duality theorem and Langlands conjectures................. 30 1. The discrete series representations........................................... 31 2. The Langlands conjectures.................................................................. 32Chapter IV. Dirac operator and the discrete classes.Hotta and Parthasarathy theorem......................................................................... 30 1. Dirac operator.................................................................................. 39 2. The realization of the discrete series representations.................... 42 3. The multiplicity theorem......................................................................... 45References........................................................................................................ 46},
author = {Janusz Szmidt},
keywords = {Yamabe group; cyclic vector; induced representation; intertwining operator; L2-cohomology; automorphic cohomology; Dirac operator},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {The duality theorems. Cyclic representations Langlands conjectures},
url = {http://eudml.org/doc/268507},
year = {1980},
}

TY - BOOK
AU - Janusz Szmidt
TI - The duality theorems. Cyclic representations Langlands conjectures
PY - 1980
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction...................................................................................................... 5Chapter I. Invariant kernels on locally compact groups and cyclicrepresentations....................................................................................................... 8 1. Distributions on topological groups.......................................... 8 2. Invariant kernels and cyclic representations.................................... 9 3. Generalized cyclic vectors. An extension of the Gelfand-Raikov correspondence......................................................................................... 12 4. Cyclicity of induced representations.................................................. 15Chapter II. Duality theorems for induced representationswith elliptic differential operator............................................................................. 17 1. Induced representations............................................................... 17 2. Invariant differential operators.............................................................. 19 3. The general duality theorem for induced representations.............. 20 4. Duality theorems with elliptic differential operator............................ 22 5. The case where G/Γ is not compact.................................................... 30Chapter III. The duality theorem and Langlands conjectures................. 30 1. The discrete series representations........................................... 31 2. The Langlands conjectures.................................................................. 32Chapter IV. Dirac operator and the discrete classes.Hotta and Parthasarathy theorem......................................................................... 30 1. Dirac operator.................................................................................. 39 2. The realization of the discrete series representations.................... 42 3. The multiplicity theorem......................................................................... 45References........................................................................................................ 46
LA - eng
KW - Yamabe group; cyclic vector; induced representation; intertwining operator; L2-cohomology; automorphic cohomology; Dirac operator
UR - http://eudml.org/doc/268507
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.