The duality theorems. Cyclic representations Langlands conjectures
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1980
Access Full Book
topAbstract
topHow to cite
topJanusz Szmidt. The duality theorems. Cyclic representations Langlands conjectures. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1980. <http://eudml.org/doc/268507>.
@book{JanuszSzmidt1980,
abstract = {CONTENTSIntroduction...................................................................................................... 5Chapter I. Invariant kernels on locally compact groups and cyclicrepresentations....................................................................................................... 8 1. Distributions on topological groups.......................................... 8 2. Invariant kernels and cyclic representations.................................... 9 3. Generalized cyclic vectors. An extension of the Gelfand-Raikov correspondence......................................................................................... 12 4. Cyclicity of induced representations.................................................. 15Chapter II. Duality theorems for induced representationswith elliptic differential operator............................................................................. 17 1. Induced representations............................................................... 17 2. Invariant differential operators.............................................................. 19 3. The general duality theorem for induced representations.............. 20 4. Duality theorems with elliptic differential operator............................ 22 5. The case where G/Γ is not compact.................................................... 30Chapter III. The duality theorem and Langlands conjectures................. 30 1. The discrete series representations........................................... 31 2. The Langlands conjectures.................................................................. 32Chapter IV. Dirac operator and the discrete classes.Hotta and Parthasarathy theorem......................................................................... 30 1. Dirac operator.................................................................................. 39 2. The realization of the discrete series representations.................... 42 3. The multiplicity theorem......................................................................... 45References........................................................................................................ 46},
author = {Janusz Szmidt},
keywords = {Yamabe group; cyclic vector; induced representation; intertwining operator; L2-cohomology; automorphic cohomology; Dirac operator},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {The duality theorems. Cyclic representations Langlands conjectures},
url = {http://eudml.org/doc/268507},
year = {1980},
}
TY - BOOK
AU - Janusz Szmidt
TI - The duality theorems. Cyclic representations Langlands conjectures
PY - 1980
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction...................................................................................................... 5Chapter I. Invariant kernels on locally compact groups and cyclicrepresentations....................................................................................................... 8 1. Distributions on topological groups.......................................... 8 2. Invariant kernels and cyclic representations.................................... 9 3. Generalized cyclic vectors. An extension of the Gelfand-Raikov correspondence......................................................................................... 12 4. Cyclicity of induced representations.................................................. 15Chapter II. Duality theorems for induced representationswith elliptic differential operator............................................................................. 17 1. Induced representations............................................................... 17 2. Invariant differential operators.............................................................. 19 3. The general duality theorem for induced representations.............. 20 4. Duality theorems with elliptic differential operator............................ 22 5. The case where G/Γ is not compact.................................................... 30Chapter III. The duality theorem and Langlands conjectures................. 30 1. The discrete series representations........................................... 31 2. The Langlands conjectures.................................................................. 32Chapter IV. Dirac operator and the discrete classes.Hotta and Parthasarathy theorem......................................................................... 30 1. Dirac operator.................................................................................. 39 2. The realization of the discrete series representations.................... 42 3. The multiplicity theorem......................................................................... 45References........................................................................................................ 46
LA - eng
KW - Yamabe group; cyclic vector; induced representation; intertwining operator; L2-cohomology; automorphic cohomology; Dirac operator
UR - http://eudml.org/doc/268507
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.