Bifurcation from a saddle connection in functional differential equations: An approach with inclination lemmas

Hans-Otto Walther

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1990

Abstract

top
CONTENTSIntroduction...........................................................................................................................................5  I.........................................................................................................................................................151. Preliminaries...................................................................................................................................152. Solutions of a family of differential delay equations with periodic nonlinearity.................................163. Linearization of the semiflow............................................................................................................214. The saddle point property...............................................................................................................24  II........................................................................................................................................................305. The transformed semiflow...............................................................................................................306. A shift along the transformed semiflow............................................................................................367. The level sets H a k ................................................................................................................448. Inclinations of tangent vectors.........................................................................................................469. Estimating D₁Σ(ψ,a) at BC-points ψ in level sets H a k ............................................................4810. End of the proof of Theorem 6.1...................................................................................................51  III.......................................................................................................................................................5311. Šilnikov continuation and return map............................................................................................5312. Smoothness properties of f...........................................................................................................5613. Bifurcation.....................................................................................................................................5814. Proof of Theorem 13.2 (vi.2) and (vi.3), for a parameter interval A 19 instead of A...............6315. Proof of Theorem 13.2 (vi.1).........................................................................................................70References.........................................................................................................................................74

How to cite

top

Hans-Otto Walther. Bifurcation from a saddle connection in functional differential equations: An approach with inclination lemmas. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1990. <http://eudml.org/doc/268509>.

@book{Hans1990,
abstract = {CONTENTSIntroduction...........................................................................................................................................5  I.........................................................................................................................................................151. Preliminaries...................................................................................................................................152. Solutions of a family of differential delay equations with periodic nonlinearity.................................163. Linearization of the semiflow............................................................................................................214. The saddle point property...............................................................................................................24  II........................................................................................................................................................305. The transformed semiflow...............................................................................................................306. A shift along the transformed semiflow............................................................................................367. The level sets $H⁺_\{ak\}$................................................................................................................448. Inclinations of tangent vectors.........................................................................................................469. Estimating D₁Σ(ψ,a) at BC-points ψ in level sets $H⁺_\{ak\}$............................................................4810. End of the proof of Theorem 6.1...................................................................................................51  III.......................................................................................................................................................5311. Šilnikov continuation and return map............................................................................................5312. Smoothness properties of f...........................................................................................................5613. Bifurcation.....................................................................................................................................5814. Proof of Theorem 13.2 (vi.2) and (vi.3), for a parameter interval $A_\{19\}$ instead of A...............6315. Proof of Theorem 13.2 (vi.1).........................................................................................................70References.........................................................................................................................................74},
author = {Hans-Otto Walther},
keywords = {retarded functional differential equations; periodic nonlinearity; bifurcations of saddle connections; bifurcating periodic solutions; stable; attractive with asymptotic phase},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Bifurcation from a saddle connection in functional differential equations: An approach with inclination lemmas},
url = {http://eudml.org/doc/268509},
year = {1990},
}

TY - BOOK
AU - Hans-Otto Walther
TI - Bifurcation from a saddle connection in functional differential equations: An approach with inclination lemmas
PY - 1990
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction...........................................................................................................................................5  I.........................................................................................................................................................151. Preliminaries...................................................................................................................................152. Solutions of a family of differential delay equations with periodic nonlinearity.................................163. Linearization of the semiflow............................................................................................................214. The saddle point property...............................................................................................................24  II........................................................................................................................................................305. The transformed semiflow...............................................................................................................306. A shift along the transformed semiflow............................................................................................367. The level sets $H⁺_{ak}$................................................................................................................448. Inclinations of tangent vectors.........................................................................................................469. Estimating D₁Σ(ψ,a) at BC-points ψ in level sets $H⁺_{ak}$............................................................4810. End of the proof of Theorem 6.1...................................................................................................51  III.......................................................................................................................................................5311. Šilnikov continuation and return map............................................................................................5312. Smoothness properties of f...........................................................................................................5613. Bifurcation.....................................................................................................................................5814. Proof of Theorem 13.2 (vi.2) and (vi.3), for a parameter interval $A_{19}$ instead of A...............6315. Proof of Theorem 13.2 (vi.1).........................................................................................................70References.........................................................................................................................................74
LA - eng
KW - retarded functional differential equations; periodic nonlinearity; bifurcations of saddle connections; bifurcating periodic solutions; stable; attractive with asymptotic phase
UR - http://eudml.org/doc/268509
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.