Logarithmic and antilogarithmic mappings

Danuta Przeworska-Rolewicz

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1994

Abstract

top
Euler in his paper De la controverse entre Mrs. Leibniz and Bernoulli sur les logarithmes des nombres négatifs and imaginairesg (Mémoires de l'Académie des Sciences de Berlin 5 (1749), 139-171, in: Opera, (1) 17, 195-232; cf. C. G. Fraser [1]) considered the rule d(log x) = dx/x. He rejected an earlier suggestion of Leibniz that this rule is only valid for positive real values of x with the following observation:"(...) Car, comme ce calcul roule sur les quantités variables, c. à d. sur des quantités considérées en général, s'il n'était pas vrai généralement qu'il fût d· lx = dx/x, quelque quantité qu'on donne à x, soit positive ou négative, ou même imaginaire, on ne pourrait jamais se servir de cette règle, la vérité du calcul différentiel étant fondée sur la généralité des règles qu'il renferme."CONTENTSIntroduction............................................................................................................................................50. Preliminaries.......................................................................................................................................61. Basic equation. Logarithms and antilogarithms..................................................................................82. Logarithms and antilogarithms of higher order.................................................................................193. Reduction theorems..........................................................................................................................244. Multiplicative case.............................................................................................................................365. Leibniz case.......................................................................................................................................416. Exponential, power and polylogarithmic functions.............................................................................517. Complex case....................................................................................................................................578. Smooth logarithms and antilogarithms..............................................................................................649. Logarithmic and antilogarithmic mappings induced by left invertible and invertible operators...........7010. Other generalizations.......................................................................................................................82   References...........................................................................................................861991 Mathematics Subject Classification: 47C05, 47H17, 47S10, 33B10.

How to cite

top

Danuta Przeworska-Rolewicz. Logarithmic and antilogarithmic mappings. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1994. <http://eudml.org/doc/268510>.

@book{DanutaPrzeworska1994,
abstract = {Euler in his paper De la controverse entre Mrs. Leibniz and Bernoulli sur les logarithmes des nombres négatifs and imaginairesg (Mémoires de l'Académie des Sciences de Berlin 5 (1749), 139-171, in: Opera, (1) 17, 195-232; cf. C. G. Fraser [1]) considered the rule d(log x) = dx/x. He rejected an earlier suggestion of Leibniz that this rule is only valid for positive real values of x with the following observation:"(...) Car, comme ce calcul roule sur les quantités variables, c. à d. sur des quantités considérées en général, s'il n'était pas vrai généralement qu'il fût d· lx = dx/x, quelque quantité qu'on donne à x, soit positive ou négative, ou même imaginaire, on ne pourrait jamais se servir de cette règle, la vérité du calcul différentiel étant fondée sur la généralité des règles qu'il renferme."CONTENTSIntroduction............................................................................................................................................50. Preliminaries.......................................................................................................................................61. Basic equation. Logarithms and antilogarithms..................................................................................82. Logarithms and antilogarithms of higher order.................................................................................193. Reduction theorems..........................................................................................................................244. Multiplicative case.............................................................................................................................365. Leibniz case.......................................................................................................................................416. Exponential, power and polylogarithmic functions.............................................................................517. Complex case....................................................................................................................................578. Smooth logarithms and antilogarithms..............................................................................................649. Logarithmic and antilogarithmic mappings induced by left invertible and invertible operators...........7010. Other generalizations.......................................................................................................................82   References...........................................................................................................861991 Mathematics Subject Classification: 47C05, 47H17, 47S10, 33B10.},
author = {Danuta Przeworska-Rolewicz},
keywords = {operational calculus; logarithmic and antilogarithmic mappings; -algebra; linear equations; algebras with left invertible and invertible operators; logarithms; antilogarithms; finite nullity; finite deficiency},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Logarithmic and antilogarithmic mappings},
url = {http://eudml.org/doc/268510},
year = {1994},
}

TY - BOOK
AU - Danuta Przeworska-Rolewicz
TI - Logarithmic and antilogarithmic mappings
PY - 1994
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - Euler in his paper De la controverse entre Mrs. Leibniz and Bernoulli sur les logarithmes des nombres négatifs and imaginairesg (Mémoires de l'Académie des Sciences de Berlin 5 (1749), 139-171, in: Opera, (1) 17, 195-232; cf. C. G. Fraser [1]) considered the rule d(log x) = dx/x. He rejected an earlier suggestion of Leibniz that this rule is only valid for positive real values of x with the following observation:"(...) Car, comme ce calcul roule sur les quantités variables, c. à d. sur des quantités considérées en général, s'il n'était pas vrai généralement qu'il fût d· lx = dx/x, quelque quantité qu'on donne à x, soit positive ou négative, ou même imaginaire, on ne pourrait jamais se servir de cette règle, la vérité du calcul différentiel étant fondée sur la généralité des règles qu'il renferme."CONTENTSIntroduction............................................................................................................................................50. Preliminaries.......................................................................................................................................61. Basic equation. Logarithms and antilogarithms..................................................................................82. Logarithms and antilogarithms of higher order.................................................................................193. Reduction theorems..........................................................................................................................244. Multiplicative case.............................................................................................................................365. Leibniz case.......................................................................................................................................416. Exponential, power and polylogarithmic functions.............................................................................517. Complex case....................................................................................................................................578. Smooth logarithms and antilogarithms..............................................................................................649. Logarithmic and antilogarithmic mappings induced by left invertible and invertible operators...........7010. Other generalizations.......................................................................................................................82   References...........................................................................................................861991 Mathematics Subject Classification: 47C05, 47H17, 47S10, 33B10.
LA - eng
KW - operational calculus; logarithmic and antilogarithmic mappings; -algebra; linear equations; algebras with left invertible and invertible operators; logarithms; antilogarithms; finite nullity; finite deficiency
UR - http://eudml.org/doc/268510
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.