A discrete maximum principle

Tadeusz Styś

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1981

Abstract

top
CONTENTSIntroduction......................................................................................................................................... 5§ 1. A maximum principle for linear mappings.................................................................................... 6§ 2. A maximum principle for nonlinear mappings............................................................................. 9§ 3. A finite difference analogue of a maximum principle for nonlinear elliptic equations.......... 11§ 4. A finite difference scheme of higher order accuracy.................................................................... 16§ 5. A maximum principle for systems of ordinary differential equations....................................... 23§ 6. The method of lines for nonlinear parabolic equations which can be degeneratedto elliptic equations.................................................................................................................................... 27§7. A geometrical interpretation of a maximum principle for a system of differenceequations..................................................................................................................................................... 30§8. A strong maximum principle for an elliptic system of nonlinear equations............................. 33References.................................................................................................................................................. 41

How to cite

top

Tadeusz Styś. A discrete maximum principle. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1981. <http://eudml.org/doc/268516>.

@book{TadeuszStyś1981,
abstract = {CONTENTSIntroduction......................................................................................................................................... 5§ 1. A maximum principle for linear mappings.................................................................................... 6§ 2. A maximum principle for nonlinear mappings............................................................................. 9§ 3. A finite difference analogue of a maximum principle for nonlinear elliptic equations.......... 11§ 4. A finite difference scheme of higher order accuracy.................................................................... 16§ 5. A maximum principle for systems of ordinary differential equations....................................... 23§ 6. The method of lines for nonlinear parabolic equations which can be degeneratedto elliptic equations.................................................................................................................................... 27§7. A geometrical interpretation of a maximum principle for a system of differenceequations..................................................................................................................................................... 30§8. A strong maximum principle for an elliptic system of nonlinear equations............................. 33References.................................................................................................................................................. 41},
author = {Tadeusz Styś},
keywords = {maximum principle; numerical methods; discrete methods; finite differences; a priori estimates},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {A discrete maximum principle},
url = {http://eudml.org/doc/268516},
year = {1981},
}

TY - BOOK
AU - Tadeusz Styś
TI - A discrete maximum principle
PY - 1981
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction......................................................................................................................................... 5§ 1. A maximum principle for linear mappings.................................................................................... 6§ 2. A maximum principle for nonlinear mappings............................................................................. 9§ 3. A finite difference analogue of a maximum principle for nonlinear elliptic equations.......... 11§ 4. A finite difference scheme of higher order accuracy.................................................................... 16§ 5. A maximum principle for systems of ordinary differential equations....................................... 23§ 6. The method of lines for nonlinear parabolic equations which can be degeneratedto elliptic equations.................................................................................................................................... 27§7. A geometrical interpretation of a maximum principle for a system of differenceequations..................................................................................................................................................... 30§8. A strong maximum principle for an elliptic system of nonlinear equations............................. 33References.................................................................................................................................................. 41
LA - eng
KW - maximum principle; numerical methods; discrete methods; finite differences; a priori estimates
UR - http://eudml.org/doc/268516
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.