top
CONTENTSIntroduction......................................................................................................................................... 5§ 1. A maximum principle for linear mappings.................................................................................... 6§ 2. A maximum principle for nonlinear mappings............................................................................. 9§ 3. A finite difference analogue of a maximum principle for nonlinear elliptic equations.......... 11§ 4. A finite difference scheme of higher order accuracy.................................................................... 16§ 5. A maximum principle for systems of ordinary differential equations....................................... 23§ 6. The method of lines for nonlinear parabolic equations which can be degeneratedto elliptic equations.................................................................................................................................... 27§7. A geometrical interpretation of a maximum principle for a system of differenceequations..................................................................................................................................................... 30§8. A strong maximum principle for an elliptic system of nonlinear equations............................. 33References.................................................................................................................................................. 41
Tadeusz Styś. A discrete maximum principle. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1981. <http://eudml.org/doc/268516>.
@book{TadeuszStyś1981, abstract = {CONTENTSIntroduction......................................................................................................................................... 5§ 1. A maximum principle for linear mappings.................................................................................... 6§ 2. A maximum principle for nonlinear mappings............................................................................. 9§ 3. A finite difference analogue of a maximum principle for nonlinear elliptic equations.......... 11§ 4. A finite difference scheme of higher order accuracy.................................................................... 16§ 5. A maximum principle for systems of ordinary differential equations....................................... 23§ 6. The method of lines for nonlinear parabolic equations which can be degeneratedto elliptic equations.................................................................................................................................... 27§7. A geometrical interpretation of a maximum principle for a system of differenceequations..................................................................................................................................................... 30§8. A strong maximum principle for an elliptic system of nonlinear equations............................. 33References.................................................................................................................................................. 41}, author = {Tadeusz Styś}, keywords = {maximum principle; numerical methods; discrete methods; finite differences; a priori estimates}, language = {eng}, location = {Warszawa}, publisher = {Instytut Matematyczny Polskiej Akademi Nauk}, title = {A discrete maximum principle}, url = {http://eudml.org/doc/268516}, year = {1981}, }
TY - BOOK AU - Tadeusz Styś TI - A discrete maximum principle PY - 1981 CY - Warszawa PB - Instytut Matematyczny Polskiej Akademi Nauk AB - CONTENTSIntroduction......................................................................................................................................... 5§ 1. A maximum principle for linear mappings.................................................................................... 6§ 2. A maximum principle for nonlinear mappings............................................................................. 9§ 3. A finite difference analogue of a maximum principle for nonlinear elliptic equations.......... 11§ 4. A finite difference scheme of higher order accuracy.................................................................... 16§ 5. A maximum principle for systems of ordinary differential equations....................................... 23§ 6. The method of lines for nonlinear parabolic equations which can be degeneratedto elliptic equations.................................................................................................................................... 27§7. A geometrical interpretation of a maximum principle for a system of differenceequations..................................................................................................................................................... 30§8. A strong maximum principle for an elliptic system of nonlinear equations............................. 33References.................................................................................................................................................. 41 LA - eng KW - maximum principle; numerical methods; discrete methods; finite differences; a priori estimates UR - http://eudml.org/doc/268516 ER -