A discrete maximum principle

Tadeusz Styś

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1981

Abstract

top
CONTENTSIntroduction......................................................................................................................................... 5§ 1. A maximum principle for linear mappings.................................................................................... 6§ 2. A maximum principle for nonlinear mappings............................................................................. 9§ 3. A finite difference analogue of a maximum principle for nonlinear elliptic equations.......... 11§ 4. A finite difference scheme of higher order accuracy.................................................................... 16§ 5. A maximum principle for systems of ordinary differential equations....................................... 23§ 6. The method of lines for nonlinear parabolic equations which can be degeneratedto elliptic equations.................................................................................................................................... 27§7. A geometrical interpretation of a maximum principle for a system of differenceequations..................................................................................................................................................... 30§8. A strong maximum principle for an elliptic system of nonlinear equations............................. 33References.................................................................................................................................................. 41

How to cite

top

Tadeusz Styś. A discrete maximum principle. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1981. <http://eudml.org/doc/268516>.

@book{TadeuszStyś1981,
abstract = {CONTENTSIntroduction......................................................................................................................................... 5§ 1. A maximum principle for linear mappings.................................................................................... 6§ 2. A maximum principle for nonlinear mappings............................................................................. 9§ 3. A finite difference analogue of a maximum principle for nonlinear elliptic equations.......... 11§ 4. A finite difference scheme of higher order accuracy.................................................................... 16§ 5. A maximum principle for systems of ordinary differential equations....................................... 23§ 6. The method of lines for nonlinear parabolic equations which can be degeneratedto elliptic equations.................................................................................................................................... 27§7. A geometrical interpretation of a maximum principle for a system of differenceequations..................................................................................................................................................... 30§8. A strong maximum principle for an elliptic system of nonlinear equations............................. 33References.................................................................................................................................................. 41},
author = {Tadeusz Styś},
keywords = {maximum principle; numerical methods; discrete methods; finite differences; a priori estimates},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {A discrete maximum principle},
url = {http://eudml.org/doc/268516},
year = {1981},
}

TY - BOOK
AU - Tadeusz Styś
TI - A discrete maximum principle
PY - 1981
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction......................................................................................................................................... 5§ 1. A maximum principle for linear mappings.................................................................................... 6§ 2. A maximum principle for nonlinear mappings............................................................................. 9§ 3. A finite difference analogue of a maximum principle for nonlinear elliptic equations.......... 11§ 4. A finite difference scheme of higher order accuracy.................................................................... 16§ 5. A maximum principle for systems of ordinary differential equations....................................... 23§ 6. The method of lines for nonlinear parabolic equations which can be degeneratedto elliptic equations.................................................................................................................................... 27§7. A geometrical interpretation of a maximum principle for a system of differenceequations..................................................................................................................................................... 30§8. A strong maximum principle for an elliptic system of nonlinear equations............................. 33References.................................................................................................................................................. 41
LA - eng
KW - maximum principle; numerical methods; discrete methods; finite differences; a priori estimates
UR - http://eudml.org/doc/268516
ER -

NotesEmbed ?

top

You must be logged in to post comments.