Quadratic forms over fields

K. Szymiczek

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1977

Abstract

top
CONTENTSIntroduction.................................................................................................................................. 5Chapter I. Preliminaries oil round and Pfister forms.......................................................... 8Chapter II. Basic properties of the Grothendieck ring......................................................... 11 § 1. Prime ideals in G(F)...................................................................................................... 11 § 2. Elements of special types............................................................................................ 15 § 3. Local properties of G(F)................................................................................................ 20Chapter III. Group structure of G(F) and W(F)....................................................................... 23 §1. General decomposition theorems.............................................................................. 23 § 2. Value sets of binary forms and the group structure of G(F) and W(F)................. 28 § 3. The rank of G(F) and W(F)............................................................................................ 32Chapter IV. Equivalence of fields with respect to quadratic forms.................................... 36 § 1. G-equivalences.............................................................................................................. 36 § 2. W-equivalences.............................................................................................................. 41 § 3. Comparisons.................................................................................................................. 43Chapter V. A Galois correspondence in the quadratic form theory.................................. 46 § 1. The binary case............................................................................................................. 46 § 2. A generalization.............................................................................................................. 54Chapter VI. Field constructions................................................................................................ 57Chapter VII. Open problems..................................................................................................... 60References.................................................................................................................................. 62

How to cite

top

K. Szymiczek. Quadratic forms over fields. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1977. <http://eudml.org/doc/268520>.

@book{K1977,
abstract = {CONTENTSIntroduction.................................................................................................................................. 5Chapter I. Preliminaries oil round and Pfister forms.......................................................... 8Chapter II. Basic properties of the Grothendieck ring......................................................... 11 § 1. Prime ideals in G(F)...................................................................................................... 11 § 2. Elements of special types............................................................................................ 15 § 3. Local properties of G(F)................................................................................................ 20Chapter III. Group structure of G(F) and W(F)....................................................................... 23 §1. General decomposition theorems.............................................................................. 23 § 2. Value sets of binary forms and the group structure of G(F) and W(F)................. 28 § 3. The rank of G(F) and W(F)............................................................................................ 32Chapter IV. Equivalence of fields with respect to quadratic forms.................................... 36 § 1. G-equivalences.............................................................................................................. 36 § 2. W-equivalences.............................................................................................................. 41 § 3. Comparisons.................................................................................................................. 43Chapter V. A Galois correspondence in the quadratic form theory.................................. 46 § 1. The binary case............................................................................................................. 46 § 2. A generalization.............................................................................................................. 54Chapter VI. Field constructions................................................................................................ 57Chapter VII. Open problems..................................................................................................... 60References.................................................................................................................................. 62},
author = {K. Szymiczek},
keywords = {Grothendieck ring; Witt ring; fields of characteristic not 2},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Quadratic forms over fields},
url = {http://eudml.org/doc/268520},
year = {1977},
}

TY - BOOK
AU - K. Szymiczek
TI - Quadratic forms over fields
PY - 1977
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction.................................................................................................................................. 5Chapter I. Preliminaries oil round and Pfister forms.......................................................... 8Chapter II. Basic properties of the Grothendieck ring......................................................... 11 § 1. Prime ideals in G(F)...................................................................................................... 11 § 2. Elements of special types............................................................................................ 15 § 3. Local properties of G(F)................................................................................................ 20Chapter III. Group structure of G(F) and W(F)....................................................................... 23 §1. General decomposition theorems.............................................................................. 23 § 2. Value sets of binary forms and the group structure of G(F) and W(F)................. 28 § 3. The rank of G(F) and W(F)............................................................................................ 32Chapter IV. Equivalence of fields with respect to quadratic forms.................................... 36 § 1. G-equivalences.............................................................................................................. 36 § 2. W-equivalences.............................................................................................................. 41 § 3. Comparisons.................................................................................................................. 43Chapter V. A Galois correspondence in the quadratic form theory.................................. 46 § 1. The binary case............................................................................................................. 46 § 2. A generalization.............................................................................................................. 54Chapter VI. Field constructions................................................................................................ 57Chapter VII. Open problems..................................................................................................... 60References.................................................................................................................................. 62
LA - eng
KW - Grothendieck ring; Witt ring; fields of characteristic not 2
UR - http://eudml.org/doc/268520
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.