Orlicz type category theorems for functional and differential equations

Józef Myjak

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1983

Abstract

top
CONTENTSIntroduction.....................................................................................................................................5  1. General results.........................................................................................................................7  1.1. Residual sets.........................................................................................................................7  1.2. Generic properties of abstract functional equations..............................................................8II. Differential equations................................................................................................................13  2.1. Continuous differential equations without existence............................................................13  2.2 Existence, uniqueness and continuous dependence............................................................18  2.3. Successive approximations..................................................................................................21  2.4. Remarks..............................................................................................................................26III. Non-expansive mappings in Banach spaces............................................................................28  3.1. Generic properties..............................................................................................................28  3.2. The density result...............................................................................................................30  3.3. Supplementary remarks......................................................................................................32IV. Asymptotic equilibria for accretive operators...........................................................................33  4.1. Notation and preliminaries...................................................................................................33  4.2. Lemmas...............................................................................................................................35  4.3. Category theorem................................................................................................................37  4.4 Application to the fixed-point theory......................................................................................38  4.5 Further results......................................................................................................................41V. Hyperbolic equations................................................................................................................43  5.1. Notation...............................................................................................................................43  5.2. Generic property of existence, uniqueness and continuous dependence...........................43  5.3. Generic property of the convergence of successive approximations...................................45  5.4. A density theorem................................................................................................................47  5.5. Remarks..............................................................................................................................48VI. Generic asymptotic stability.....................................................................................................50  6.1. Stability and asymptotic stability of stationary equations.....................................................50  6.2. Stability and asymptotic stability of non-stationary equations..............................................54  6.3. Stability by the Lyapunov function method..........................................................................55  6.4. Generic stability...................................................................................................................57VII. Functional integral equations.................................................................................................58  7.1. Notation and auxiliary lemmas.............................................................................................58  7.2. Category theorems..............................................................................................................61  7.3. Some generalizations..........................................................................................................63VIII. Functional differential equations............................................................................................64  8.1. Notation and preliminaries...................................................................................................64  8.2. Existence of unlimited solutions...........................................................................................65  8.3. Continuous dependence.....................................................................................................67  8.4. Existence and uniqueness as a generic property................................................................72  8.5. Convergence of successive approximations as a generic property.....................................75References..................................................................................................................................79

How to cite

top

Józef Myjak. Orlicz type category theorems for functional and differential equations. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1983. <http://eudml.org/doc/268523>.

@book{JózefMyjak1983,
abstract = {CONTENTSIntroduction.....................................................................................................................................5  1. General results.........................................................................................................................7  1.1. Residual sets.........................................................................................................................7  1.2. Generic properties of abstract functional equations..............................................................8II. Differential equations................................................................................................................13  2.1. Continuous differential equations without existence............................................................13  2.2 Existence, uniqueness and continuous dependence............................................................18  2.3. Successive approximations..................................................................................................21  2.4. Remarks..............................................................................................................................26III. Non-expansive mappings in Banach spaces............................................................................28  3.1. Generic properties..............................................................................................................28  3.2. The density result...............................................................................................................30  3.3. Supplementary remarks......................................................................................................32IV. Asymptotic equilibria for accretive operators...........................................................................33  4.1. Notation and preliminaries...................................................................................................33  4.2. Lemmas...............................................................................................................................35  4.3. Category theorem................................................................................................................37  4.4 Application to the fixed-point theory......................................................................................38  4.5 Further results......................................................................................................................41V. Hyperbolic equations................................................................................................................43  5.1. Notation...............................................................................................................................43  5.2. Generic property of existence, uniqueness and continuous dependence...........................43  5.3. Generic property of the convergence of successive approximations...................................45  5.4. A density theorem................................................................................................................47  5.5. Remarks..............................................................................................................................48VI. Generic asymptotic stability.....................................................................................................50  6.1. Stability and asymptotic stability of stationary equations.....................................................50  6.2. Stability and asymptotic stability of non-stationary equations..............................................54  6.3. Stability by the Lyapunov function method..........................................................................55  6.4. Generic stability...................................................................................................................57VII. Functional integral equations.................................................................................................58  7.1. Notation and auxiliary lemmas.............................................................................................58  7.2. Category theorems..............................................................................................................61  7.3. Some generalizations..........................................................................................................63VIII. Functional differential equations............................................................................................64  8.1. Notation and preliminaries...................................................................................................64  8.2. Existence of unlimited solutions...........................................................................................65  8.3. Continuous dependence.....................................................................................................67  8.4. Existence and uniqueness as a generic property................................................................72  8.5. Convergence of successive approximations as a generic property.....................................75References..................................................................................................................................79},
author = {Józef Myjak},
keywords = {Cauchy problem; convergence of successive approximations; accretive operators; Banach space; functional-integral equations},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Orlicz type category theorems for functional and differential equations},
url = {http://eudml.org/doc/268523},
year = {1983},
}

TY - BOOK
AU - Józef Myjak
TI - Orlicz type category theorems for functional and differential equations
PY - 1983
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction.....................................................................................................................................5  1. General results.........................................................................................................................7  1.1. Residual sets.........................................................................................................................7  1.2. Generic properties of abstract functional equations..............................................................8II. Differential equations................................................................................................................13  2.1. Continuous differential equations without existence............................................................13  2.2 Existence, uniqueness and continuous dependence............................................................18  2.3. Successive approximations..................................................................................................21  2.4. Remarks..............................................................................................................................26III. Non-expansive mappings in Banach spaces............................................................................28  3.1. Generic properties..............................................................................................................28  3.2. The density result...............................................................................................................30  3.3. Supplementary remarks......................................................................................................32IV. Asymptotic equilibria for accretive operators...........................................................................33  4.1. Notation and preliminaries...................................................................................................33  4.2. Lemmas...............................................................................................................................35  4.3. Category theorem................................................................................................................37  4.4 Application to the fixed-point theory......................................................................................38  4.5 Further results......................................................................................................................41V. Hyperbolic equations................................................................................................................43  5.1. Notation...............................................................................................................................43  5.2. Generic property of existence, uniqueness and continuous dependence...........................43  5.3. Generic property of the convergence of successive approximations...................................45  5.4. A density theorem................................................................................................................47  5.5. Remarks..............................................................................................................................48VI. Generic asymptotic stability.....................................................................................................50  6.1. Stability and asymptotic stability of stationary equations.....................................................50  6.2. Stability and asymptotic stability of non-stationary equations..............................................54  6.3. Stability by the Lyapunov function method..........................................................................55  6.4. Generic stability...................................................................................................................57VII. Functional integral equations.................................................................................................58  7.1. Notation and auxiliary lemmas.............................................................................................58  7.2. Category theorems..............................................................................................................61  7.3. Some generalizations..........................................................................................................63VIII. Functional differential equations............................................................................................64  8.1. Notation and preliminaries...................................................................................................64  8.2. Existence of unlimited solutions...........................................................................................65  8.3. Continuous dependence.....................................................................................................67  8.4. Existence and uniqueness as a generic property................................................................72  8.5. Convergence of successive approximations as a generic property.....................................75References..................................................................................................................................79
LA - eng
KW - Cauchy problem; convergence of successive approximations; accretive operators; Banach space; functional-integral equations
UR - http://eudml.org/doc/268523
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.