Order relations in the set of probability distribution functions and their applications in queueing theory

Tomasz Rolski

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1976

Abstract

top
CONTENTSIntroduction......................................................................................................................................... 51. n-Monotonic functions on (— ∞, ∞)........................................................................................... 62. Order relations in the set of probability distribution functions....................................................... 12 2.1. Preliminary concepts............................................................................................................ 12 2.2. Relations 1 . n , 2 . n ............................................................................................. 13 2.3. Extremal probability distribution functions........................................................................ 17 2.4. Relations 2 . 0 , 2 . 0 ............................................................................................. 18 2.5. Isotonic operators................................................................................................................. 22 2.6. Remarks about quasi-ordering relations in the set of random variables.................. 26 3. Order relationship between queueing systems................................................................. 26 3.1. Preliminary concepts, G I ( x ) / G ( y ) / 1 queues.......................................................... 26 3.2. G I ( x ) / G / 1 queues........................................................................................................... 27 3.3. Order relationship between G I ( x ) / M ( y ) / 1 and M ( x ) / G ( y ) / 1 queues...... 30 4. Bounds for G I ( x ) / G ( y ) / 1 queues................................................................................ 32 4.1. Introduction............................................................................................................................. 32 4.2. Bounds for G I ( x ) / G ( y ) / 1 queues ........................................................................... 33 4.3. Bounds for G I ( x ) / M ( y ) / 1 , M ( x ) / G ( y ) / 1 queues............................................... 36 4.4. Application of the relations 1 . n 2 . n in queues............................................ 37Appendix...................................................................................................................................................... 38References.................................................................................................................................................. 46

How to cite

top

Tomasz Rolski. Order relations in the set of probability distribution functions and their applications in queueing theory. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1976. <http://eudml.org/doc/268532>.

@book{TomaszRolski1976,
abstract = {CONTENTSIntroduction......................................................................................................................................... 51. n-Monotonic functions on (— ∞, ∞)........................................................................................... 62. Order relations in the set of probability distribution functions....................................................... 12 2.1. Preliminary concepts............................................................................................................ 12 2.2. Relations $≤_\{1.n\}, ≤_\{2.n\}$............................................................................................. 13 2.3. Extremal probability distribution functions........................................................................ 17 2.4. Relations $≤_\{2.0\}, ≤_\{2.0\}$............................................................................................. 18 2.5. Isotonic operators................................................................................................................. 22 2.6. Remarks about quasi-ordering relations in the set of random variables.................. 26 3. Order relationship between queueing systems................................................................. 26 3.1. Preliminary concepts, $GI^\{(x)\}/G^\{(y)\}/1$ queues.......................................................... 26 3.2. $GI^\{(x)\}/G/1$ queues........................................................................................................... 27 3.3. Order relationship between $GI^\{(x)\}/M^\{(y)\}/1$ and $M^\{(x)\}/G^\{(y)\}/1$ queues...... 30 4. Bounds for $GI^\{(x)\}/G^\{(y)\}/1$ queues................................................................................ 32 4.1. Introduction............................................................................................................................. 32 4.2. Bounds for $GI^\{(x)\}/G^\{(y)\}/1$ queues ........................................................................... 33 4.3. Bounds for $GI^\{(x)\}/M^\{(y)\}/1, M^\{(x)\}/G^\{(y)\}/1$ queues............................................... 36 4.4. Application of the relations $≤_\{1.n\} ≤_\{2.n\}$ in queues............................................ 37Appendix...................................................................................................................................................... 38References.................................................................................................................................................. 46},
author = {Tomasz Rolski},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Order relations in the set of probability distribution functions and their applications in queueing theory},
url = {http://eudml.org/doc/268532},
year = {1976},
}

TY - BOOK
AU - Tomasz Rolski
TI - Order relations in the set of probability distribution functions and their applications in queueing theory
PY - 1976
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction......................................................................................................................................... 51. n-Monotonic functions on (— ∞, ∞)........................................................................................... 62. Order relations in the set of probability distribution functions....................................................... 12 2.1. Preliminary concepts............................................................................................................ 12 2.2. Relations $≤_{1.n}, ≤_{2.n}$............................................................................................. 13 2.3. Extremal probability distribution functions........................................................................ 17 2.4. Relations $≤_{2.0}, ≤_{2.0}$............................................................................................. 18 2.5. Isotonic operators................................................................................................................. 22 2.6. Remarks about quasi-ordering relations in the set of random variables.................. 26 3. Order relationship between queueing systems................................................................. 26 3.1. Preliminary concepts, $GI^{(x)}/G^{(y)}/1$ queues.......................................................... 26 3.2. $GI^{(x)}/G/1$ queues........................................................................................................... 27 3.3. Order relationship between $GI^{(x)}/M^{(y)}/1$ and $M^{(x)}/G^{(y)}/1$ queues...... 30 4. Bounds for $GI^{(x)}/G^{(y)}/1$ queues................................................................................ 32 4.1. Introduction............................................................................................................................. 32 4.2. Bounds for $GI^{(x)}/G^{(y)}/1$ queues ........................................................................... 33 4.3. Bounds for $GI^{(x)}/M^{(y)}/1, M^{(x)}/G^{(y)}/1$ queues............................................... 36 4.4. Application of the relations $≤_{1.n} ≤_{2.n}$ in queues............................................ 37Appendix...................................................................................................................................................... 38References.................................................................................................................................................. 46
LA - eng
UR - http://eudml.org/doc/268532
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.