Order relations in the set of probability distribution functions and their applications in queueing theory
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1976
Access Full Book
topAbstract
topHow to cite
topTomasz Rolski. Order relations in the set of probability distribution functions and their applications in queueing theory. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1976. <http://eudml.org/doc/268532>.
@book{TomaszRolski1976,
abstract = {CONTENTSIntroduction......................................................................................................................................... 51. n-Monotonic functions on (— ∞, ∞)........................................................................................... 62. Order relations in the set of probability distribution functions....................................................... 12 2.1. Preliminary concepts............................................................................................................ 12 2.2. Relations $≤_\{1.n\}, ≤_\{2.n\}$............................................................................................. 13 2.3. Extremal probability distribution functions........................................................................ 17 2.4. Relations $≤_\{2.0\}, ≤_\{2.0\}$............................................................................................. 18 2.5. Isotonic operators................................................................................................................. 22 2.6. Remarks about quasi-ordering relations in the set of random variables.................. 26 3. Order relationship between queueing systems................................................................. 26 3.1. Preliminary concepts, $GI^\{(x)\}/G^\{(y)\}/1$ queues.......................................................... 26 3.2. $GI^\{(x)\}/G/1$ queues........................................................................................................... 27 3.3. Order relationship between $GI^\{(x)\}/M^\{(y)\}/1$ and $M^\{(x)\}/G^\{(y)\}/1$ queues...... 30 4. Bounds for $GI^\{(x)\}/G^\{(y)\}/1$ queues................................................................................ 32 4.1. Introduction............................................................................................................................. 32 4.2. Bounds for $GI^\{(x)\}/G^\{(y)\}/1$ queues ........................................................................... 33 4.3. Bounds for $GI^\{(x)\}/M^\{(y)\}/1, M^\{(x)\}/G^\{(y)\}/1$ queues............................................... 36 4.4. Application of the relations $≤_\{1.n\} ≤_\{2.n\}$ in queues............................................ 37Appendix...................................................................................................................................................... 38References.................................................................................................................................................. 46},
author = {Tomasz Rolski},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Order relations in the set of probability distribution functions and their applications in queueing theory},
url = {http://eudml.org/doc/268532},
year = {1976},
}
TY - BOOK
AU - Tomasz Rolski
TI - Order relations in the set of probability distribution functions and their applications in queueing theory
PY - 1976
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction......................................................................................................................................... 51. n-Monotonic functions on (— ∞, ∞)........................................................................................... 62. Order relations in the set of probability distribution functions....................................................... 12 2.1. Preliminary concepts............................................................................................................ 12 2.2. Relations $≤_{1.n}, ≤_{2.n}$............................................................................................. 13 2.3. Extremal probability distribution functions........................................................................ 17 2.4. Relations $≤_{2.0}, ≤_{2.0}$............................................................................................. 18 2.5. Isotonic operators................................................................................................................. 22 2.6. Remarks about quasi-ordering relations in the set of random variables.................. 26 3. Order relationship between queueing systems................................................................. 26 3.1. Preliminary concepts, $GI^{(x)}/G^{(y)}/1$ queues.......................................................... 26 3.2. $GI^{(x)}/G/1$ queues........................................................................................................... 27 3.3. Order relationship between $GI^{(x)}/M^{(y)}/1$ and $M^{(x)}/G^{(y)}/1$ queues...... 30 4. Bounds for $GI^{(x)}/G^{(y)}/1$ queues................................................................................ 32 4.1. Introduction............................................................................................................................. 32 4.2. Bounds for $GI^{(x)}/G^{(y)}/1$ queues ........................................................................... 33 4.3. Bounds for $GI^{(x)}/M^{(y)}/1, M^{(x)}/G^{(y)}/1$ queues............................................... 36 4.4. Application of the relations $≤_{1.n} ≤_{2.n}$ in queues............................................ 37Appendix...................................................................................................................................................... 38References.................................................................................................................................................. 46
LA - eng
UR - http://eudml.org/doc/268532
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.