Projective abelian Hopf algebras over a field

Andrzej Skowroński

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1983

Abstract

top
CONTENTSIntroduction............................................................................................................................................51. Cohen schemes.................................................................................................................................72. Projective abelian Hopf algebras......................................................................................................113. The structure of groups H o m ( m P , n P ) ..............................................................................174. Endomorphism rings of n P ..........................................................................................................275. The E n d ( n P ) - E n d ( m P ) -bimodule structure of H o m ( m P , n P ) ................31References..........................................................................................................................................42

How to cite

top

Andrzej Skowroński. Projective abelian Hopf algebras over a field. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1983. <http://eudml.org/doc/268540>.

@book{AndrzejSkowroński1983,
abstract = {CONTENTSIntroduction............................................................................................................................................51. Cohen schemes.................................................................................................................................72. Projective abelian Hopf algebras......................................................................................................113. The structure of groups $Hom_\{ℋ ₁\}(^mP,^nP)$..............................................................................174. Endomorphism rings of $^nP$..........................................................................................................275. The $End_\{ℋ ₁\}(^nP) - End_\{ℋ ₁\}(^mP)$-bimodule structure of $Hom_\{ℋ ₁\}(^mP,^nP)$................31References..........................................................................................................................................42},
author = {Andrzej Skowroński},
keywords = {category of abelian Hopf algebras; strictly commutative cocommutative graded Hopf algebras; indecomposable injective objects; indecomposable projective objects; endomorphism rings; Cohen schemes; indecomposable noetherian projective generators; Grothendieck categories},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Projective abelian Hopf algebras over a field},
url = {http://eudml.org/doc/268540},
year = {1983},
}

TY - BOOK
AU - Andrzej Skowroński
TI - Projective abelian Hopf algebras over a field
PY - 1983
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction............................................................................................................................................51. Cohen schemes.................................................................................................................................72. Projective abelian Hopf algebras......................................................................................................113. The structure of groups $Hom_{ℋ ₁}(^mP,^nP)$..............................................................................174. Endomorphism rings of $^nP$..........................................................................................................275. The $End_{ℋ ₁}(^nP) - End_{ℋ ₁}(^mP)$-bimodule structure of $Hom_{ℋ ₁}(^mP,^nP)$................31References..........................................................................................................................................42
LA - eng
KW - category of abelian Hopf algebras; strictly commutative cocommutative graded Hopf algebras; indecomposable injective objects; indecomposable projective objects; endomorphism rings; Cohen schemes; indecomposable noetherian projective generators; Grothendieck categories
UR - http://eudml.org/doc/268540
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.