On the geometric structure of the set of solutions of Einstein equations

Wiktor Szczyrba

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1977

Abstract

top
CONTENTS1. Introduction .......................................................................................................................................................... 52. Notation and preliminary remarks............................................................................................................................ 73. A geometric approach to the calculus of variations............................................................................................... 94. Multisymplectic manifolds and a multiphase structure of a classical field theory........................................... 195. A multiphase structure of General Relativity............................................................................................................ 226. The Cauchy problem and ADMW coordinates in General Relativity................................................................... 267. A symplectic structure in the set of solutions of field equations.......................................................................... 298. A symplectic structure in the set of Einstein metrics.............................................................................................. 369. The gauge distribution and the action of the diffeomorphism group.................................................................. 3910. Degrees of freedom and a superphase space -for General Relativity............................................................. 4611. A pseudo-differential structure in the space ℋ. A Lie algebra of functionals on ℋ....................................... 4812. A variational principle for General Relativity............................................................................................................ 5513. The Hamilton-Jacobi equation in lagrangian field theories................................................................................ 5714. The Hamilton-Jacobi equation in General Relativity............................................................................................. 6215. Proofs............................................................................................................................................................................. 66Appendix. Proof of the ellipticity of the operator AA*..................................................................................................... 79References.......................................................................................................................................................................... 82

How to cite

top

Wiktor Szczyrba. On the geometric structure of the set of solutions of Einstein equations. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1977. <http://eudml.org/doc/268541>.

@book{WiktorSzczyrba1977,
abstract = {CONTENTS1. Introduction .......................................................................................................................................................... 52. Notation and preliminary remarks............................................................................................................................ 73. A geometric approach to the calculus of variations............................................................................................... 94. Multisymplectic manifolds and a multiphase structure of a classical field theory........................................... 195. A multiphase structure of General Relativity............................................................................................................ 226. The Cauchy problem and ADMW coordinates in General Relativity................................................................... 267. A symplectic structure in the set of solutions of field equations.......................................................................... 298. A symplectic structure in the set of Einstein metrics.............................................................................................. 369. The gauge distribution and the action of the diffeomorphism group.................................................................. 3910. Degrees of freedom and a superphase space -for General Relativity............................................................. 4611. A pseudo-differential structure in the space ℋ. A Lie algebra of functionals on ℋ....................................... 4812. A variational principle for General Relativity............................................................................................................ 5513. The Hamilton-Jacobi equation in lagrangian field theories................................................................................ 5714. The Hamilton-Jacobi equation in General Relativity............................................................................................. 6215. Proofs............................................................................................................................................................................. 66Appendix. Proof of the ellipticity of the operator AA*..................................................................................................... 79References.......................................................................................................................................................................... 82},
author = {Wiktor Szczyrba},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {On the geometric structure of the set of solutions of Einstein equations},
url = {http://eudml.org/doc/268541},
year = {1977},
}

TY - BOOK
AU - Wiktor Szczyrba
TI - On the geometric structure of the set of solutions of Einstein equations
PY - 1977
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTS1. Introduction .......................................................................................................................................................... 52. Notation and preliminary remarks............................................................................................................................ 73. A geometric approach to the calculus of variations............................................................................................... 94. Multisymplectic manifolds and a multiphase structure of a classical field theory........................................... 195. A multiphase structure of General Relativity............................................................................................................ 226. The Cauchy problem and ADMW coordinates in General Relativity................................................................... 267. A symplectic structure in the set of solutions of field equations.......................................................................... 298. A symplectic structure in the set of Einstein metrics.............................................................................................. 369. The gauge distribution and the action of the diffeomorphism group.................................................................. 3910. Degrees of freedom and a superphase space -for General Relativity............................................................. 4611. A pseudo-differential structure in the space ℋ. A Lie algebra of functionals on ℋ....................................... 4812. A variational principle for General Relativity............................................................................................................ 5513. The Hamilton-Jacobi equation in lagrangian field theories................................................................................ 5714. The Hamilton-Jacobi equation in General Relativity............................................................................................. 6215. Proofs............................................................................................................................................................................. 66Appendix. Proof of the ellipticity of the operator AA*..................................................................................................... 79References.......................................................................................................................................................................... 82
LA - eng
UR - http://eudml.org/doc/268541
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.