On the geometric structure of the set of solutions of Einstein equations
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1977
Access Full Book
topAbstract
topHow to cite
topWiktor Szczyrba. On the geometric structure of the set of solutions of Einstein equations. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1977. <http://eudml.org/doc/268541>.
@book{WiktorSzczyrba1977,
abstract = {CONTENTS1. Introduction .......................................................................................................................................................... 52. Notation and preliminary remarks............................................................................................................................ 73. A geometric approach to the calculus of variations............................................................................................... 94. Multisymplectic manifolds and a multiphase structure of a classical field theory........................................... 195. A multiphase structure of General Relativity............................................................................................................ 226. The Cauchy problem and ADMW coordinates in General Relativity................................................................... 267. A symplectic structure in the set of solutions of field equations.......................................................................... 298. A symplectic structure in the set of Einstein metrics.............................................................................................. 369. The gauge distribution and the action of the diffeomorphism group.................................................................. 3910. Degrees of freedom and a superphase space -for General Relativity............................................................. 4611. A pseudo-differential structure in the space ℋ. A Lie algebra of functionals on ℋ....................................... 4812. A variational principle for General Relativity............................................................................................................ 5513. The Hamilton-Jacobi equation in lagrangian field theories................................................................................ 5714. The Hamilton-Jacobi equation in General Relativity............................................................................................. 6215. Proofs............................................................................................................................................................................. 66Appendix. Proof of the ellipticity of the operator AA*..................................................................................................... 79References.......................................................................................................................................................................... 82},
author = {Wiktor Szczyrba},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {On the geometric structure of the set of solutions of Einstein equations},
url = {http://eudml.org/doc/268541},
year = {1977},
}
TY - BOOK
AU - Wiktor Szczyrba
TI - On the geometric structure of the set of solutions of Einstein equations
PY - 1977
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTS1. Introduction .......................................................................................................................................................... 52. Notation and preliminary remarks............................................................................................................................ 73. A geometric approach to the calculus of variations............................................................................................... 94. Multisymplectic manifolds and a multiphase structure of a classical field theory........................................... 195. A multiphase structure of General Relativity............................................................................................................ 226. The Cauchy problem and ADMW coordinates in General Relativity................................................................... 267. A symplectic structure in the set of solutions of field equations.......................................................................... 298. A symplectic structure in the set of Einstein metrics.............................................................................................. 369. The gauge distribution and the action of the diffeomorphism group.................................................................. 3910. Degrees of freedom and a superphase space -for General Relativity............................................................. 4611. A pseudo-differential structure in the space ℋ. A Lie algebra of functionals on ℋ....................................... 4812. A variational principle for General Relativity............................................................................................................ 5513. The Hamilton-Jacobi equation in lagrangian field theories................................................................................ 5714. The Hamilton-Jacobi equation in General Relativity............................................................................................. 6215. Proofs............................................................................................................................................................................. 66Appendix. Proof of the ellipticity of the operator AA*..................................................................................................... 79References.......................................................................................................................................................................... 82
LA - eng
UR - http://eudml.org/doc/268541
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.