The theory of uniform approximation I. Non-asymptotic theoretical problems

S. Paszkowski

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1962

Abstract

top
CONTENTSIntroduction..................................................................................................................................................................................... 3CHAPTER I. Basic properties of the best polynomials1. Existence, uniqueness and the characteristic properties of the best polynomials............................................................................... 62. The direct application of the theorem concerning the (n, F)-points to computing the best polynomials. The Chebyshev polynomials....... 153. The characteristic properties of pairs of successive best polynomials........................................................................................................................... 26CHAPTER II. Estimation of error of the beet approximation4. Basic theorems................................................................................................................................................................................................. 335. Vallée Poussin type estimations................................................................... 386. Estimation of the error of the best approximation for functions which are differentiable several times........................................ 537. Estimation of the (n + 1)-st error of the best approximation based upon the knowledge of the n-th best polynomial................... 578. The relation between the error of the best approximation and the interval of approximation.................................................. 65CHAPTER III. The distribution of (n)-points in the interval of approximation9. The estimates dependent upon the value of the ratio ε n + 1 ( ξ ) ε n ( ξ ) ....................................................................................... 7010. Auxiliary theorems..................................................................... 8411. The estimates dependent upon the properties of the derivatives of the function ξ. General theorems....................................... 9212. The estimates dependent upon the properties of the derivatives of the function ξ. The choice of function γp............................. 111CHAPTER IV. Methods of computing well-approximating and best polynomials13. Well-approximating polynomials................................................................................................................................................................ 12114. Approximation of families of functions. The Zolotarev polynomials................................................................................................. 14015. The theory of the method of Remez................................................................................................................................................... 15616. Other methods of computing the best polynomials................................................................................................................................ 169References..................................................................................................................................................... 175

How to cite

top

S. Paszkowski. The theory of uniform approximation I. Non-asymptotic theoretical problems. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1962. <http://eudml.org/doc/268542>.

@book{S1962,
abstract = {CONTENTSIntroduction..................................................................................................................................................................................... 3CHAPTER I. Basic properties of the best polynomials1. Existence, uniqueness and the characteristic properties of the best polynomials............................................................................... 62. The direct application of the theorem concerning the (n, F)-points to computing the best polynomials. The Chebyshev polynomials....... 153. The characteristic properties of pairs of successive best polynomials........................................................................................................................... 26CHAPTER II. Estimation of error of the beet approximation4. Basic theorems................................................................................................................................................................................................. 335. Vallée Poussin type estimations................................................................... 386. Estimation of the error of the best approximation for functions which are differentiable several times........................................ 537. Estimation of the (n + 1)-st error of the best approximation based upon the knowledge of the n-th best polynomial................... 578. The relation between the error of the best approximation and the interval of approximation.................................................. 65CHAPTER III. The distribution of (n)-points in the interval of approximation9. The estimates dependent upon the value of the ratio $ε_\{n + 1\}(ξ)ε_n(ξ)$....................................................................................... 7010. Auxiliary theorems..................................................................... 8411. The estimates dependent upon the properties of the derivatives of the function ξ. General theorems....................................... 9212. The estimates dependent upon the properties of the derivatives of the function ξ. The choice of function γp............................. 111CHAPTER IV. Methods of computing well-approximating and best polynomials13. Well-approximating polynomials................................................................................................................................................................ 12114. Approximation of families of functions. The Zolotarev polynomials................................................................................................. 14015. The theory of the method of Remez................................................................................................................................................... 15616. Other methods of computing the best polynomials................................................................................................................................ 169References..................................................................................................................................................... 175},
author = {S. Paszkowski},
keywords = {approximation and series expansion of real functions},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {The theory of uniform approximation I. Non-asymptotic theoretical problems},
url = {http://eudml.org/doc/268542},
year = {1962},
}

TY - BOOK
AU - S. Paszkowski
TI - The theory of uniform approximation I. Non-asymptotic theoretical problems
PY - 1962
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction..................................................................................................................................................................................... 3CHAPTER I. Basic properties of the best polynomials1. Existence, uniqueness and the characteristic properties of the best polynomials............................................................................... 62. The direct application of the theorem concerning the (n, F)-points to computing the best polynomials. The Chebyshev polynomials....... 153. The characteristic properties of pairs of successive best polynomials........................................................................................................................... 26CHAPTER II. Estimation of error of the beet approximation4. Basic theorems................................................................................................................................................................................................. 335. Vallée Poussin type estimations................................................................... 386. Estimation of the error of the best approximation for functions which are differentiable several times........................................ 537. Estimation of the (n + 1)-st error of the best approximation based upon the knowledge of the n-th best polynomial................... 578. The relation between the error of the best approximation and the interval of approximation.................................................. 65CHAPTER III. The distribution of (n)-points in the interval of approximation9. The estimates dependent upon the value of the ratio $ε_{n + 1}(ξ)ε_n(ξ)$....................................................................................... 7010. Auxiliary theorems..................................................................... 8411. The estimates dependent upon the properties of the derivatives of the function ξ. General theorems....................................... 9212. The estimates dependent upon the properties of the derivatives of the function ξ. The choice of function γp............................. 111CHAPTER IV. Methods of computing well-approximating and best polynomials13. Well-approximating polynomials................................................................................................................................................................ 12114. Approximation of families of functions. The Zolotarev polynomials................................................................................................. 14015. The theory of the method of Remez................................................................................................................................................... 15616. Other methods of computing the best polynomials................................................................................................................................ 169References..................................................................................................................................................... 175
LA - eng
KW - approximation and series expansion of real functions
UR - http://eudml.org/doc/268542
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.