Foundations of Vietoris homology theory with applications to non-compact spaces

Robert E. Reed

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1980

Abstract

top
CONTENTSPreface...................................................................................................................................... 5I. Introduction............................................................................................................................ 7II. Simple chains 2.1. Simplexes............................................................................................................ 12 2.2. Chains........................................................................................................................... 13 2.3. Boundary operator. Cycles and boundaries.......................................................... 15 2.4. Join operator................................................................................................................ 15 2.5. ε-simplexes and ε-chains........................................................................................... 16III. Sequential chains 3.1. Sequences and subsequences...................................................................... 17 3.2. Sequential chains....................................................................................................... 18 3.3. Infinite chains. General homology groups............................................................. 18 3.4. Infinite chains in subspaces..................................................................................... 19 3.5. True cycles. Vietoris homology groups................................................................... 21 3.6. Subsequences of infinite chains............................................................................. 22 3.7. A condition for homology of infinite cycles.............................................................. 24IV. Functions, mappings, and null translations4.1. Homomorphisms of simple chains induced by functions...................................... 25 4.2. Homomorphisms of sequential chains induced by functions........................... 25 4.3. Homomorphisms of ε-chains induced by functions............................................ 26 4.4. Homomorphisms of infinite chains induced by maps........................................ 27 4.5. Topological invariance of the central and Vietoris homology groups............... 28 4.6. Non-equivalence of the general and Vietoris homology groups....................... 30 4.7. The homotopy theorem.............................................................................................. 31 4.8. Null translations.......................................................................................................... 34V. The Phragmen-Brouwer theorem 5.1. Introduction.......................................................................................................... 37 5.2. The Phragmen Brouwer theorem for non-compact spaces............................... 39VI. The Alexandroff dimension theorem 6.1. Introduction.......................................................................................................... 40 6.2. Compactly dimensioned spaces............................................................................. 41 6.3. The generalized Alexandroff theorem..................................................................... 43Bibliography.............................................................................................................................. 46

How to cite

top

Robert E. Reed. Foundations of Vietoris homology theory with applications to non-compact spaces. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1980. <http://eudml.org/doc/268548>.

@book{RobertE1980,
abstract = {CONTENTSPreface...................................................................................................................................... 5I. Introduction............................................................................................................................ 7II. Simple chains 2.1. Simplexes............................................................................................................ 12 2.2. Chains........................................................................................................................... 13 2.3. Boundary operator. Cycles and boundaries.......................................................... 15 2.4. Join operator................................................................................................................ 15 2.5. ε-simplexes and ε-chains........................................................................................... 16III. Sequential chains 3.1. Sequences and subsequences...................................................................... 17 3.2. Sequential chains....................................................................................................... 18 3.3. Infinite chains. General homology groups............................................................. 18 3.4. Infinite chains in subspaces..................................................................................... 19 3.5. True cycles. Vietoris homology groups................................................................... 21 3.6. Subsequences of infinite chains............................................................................. 22 3.7. A condition for homology of infinite cycles.............................................................. 24IV. Functions, mappings, and null translations4.1. Homomorphisms of simple chains induced by functions...................................... 25 4.2. Homomorphisms of sequential chains induced by functions........................... 25 4.3. Homomorphisms of ε-chains induced by functions............................................ 26 4.4. Homomorphisms of infinite chains induced by maps........................................ 27 4.5. Topological invariance of the central and Vietoris homology groups............... 28 4.6. Non-equivalence of the general and Vietoris homology groups....................... 30 4.7. The homotopy theorem.............................................................................................. 31 4.8. Null translations.......................................................................................................... 34V. The Phragmen-Brouwer theorem 5.1. Introduction.......................................................................................................... 37 5.2. The Phragmen Brouwer theorem for non-compact spaces............................... 39VI. The Alexandroff dimension theorem 6.1. Introduction.......................................................................................................... 40 6.2. Compactly dimensioned spaces............................................................................. 41 6.3. The generalized Alexandroff theorem..................................................................... 43Bibliography.............................................................................................................................. 46},
author = {Robert E. Reed},
keywords = {Vietoris homology theory with compact carriers in arbitrary metric spaces; extension of Alexandroff's homological dimension theorem to a class of locally compact metric spaces; Phragmen-Brouwer theorem for arbitrary metric spaces; covering dimension; compactly dimensioned spaces},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Foundations of Vietoris homology theory with applications to non-compact spaces},
url = {http://eudml.org/doc/268548},
year = {1980},
}

TY - BOOK
AU - Robert E. Reed
TI - Foundations of Vietoris homology theory with applications to non-compact spaces
PY - 1980
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSPreface...................................................................................................................................... 5I. Introduction............................................................................................................................ 7II. Simple chains 2.1. Simplexes............................................................................................................ 12 2.2. Chains........................................................................................................................... 13 2.3. Boundary operator. Cycles and boundaries.......................................................... 15 2.4. Join operator................................................................................................................ 15 2.5. ε-simplexes and ε-chains........................................................................................... 16III. Sequential chains 3.1. Sequences and subsequences...................................................................... 17 3.2. Sequential chains....................................................................................................... 18 3.3. Infinite chains. General homology groups............................................................. 18 3.4. Infinite chains in subspaces..................................................................................... 19 3.5. True cycles. Vietoris homology groups................................................................... 21 3.6. Subsequences of infinite chains............................................................................. 22 3.7. A condition for homology of infinite cycles.............................................................. 24IV. Functions, mappings, and null translations4.1. Homomorphisms of simple chains induced by functions...................................... 25 4.2. Homomorphisms of sequential chains induced by functions........................... 25 4.3. Homomorphisms of ε-chains induced by functions............................................ 26 4.4. Homomorphisms of infinite chains induced by maps........................................ 27 4.5. Topological invariance of the central and Vietoris homology groups............... 28 4.6. Non-equivalence of the general and Vietoris homology groups....................... 30 4.7. The homotopy theorem.............................................................................................. 31 4.8. Null translations.......................................................................................................... 34V. The Phragmen-Brouwer theorem 5.1. Introduction.......................................................................................................... 37 5.2. The Phragmen Brouwer theorem for non-compact spaces............................... 39VI. The Alexandroff dimension theorem 6.1. Introduction.......................................................................................................... 40 6.2. Compactly dimensioned spaces............................................................................. 41 6.3. The generalized Alexandroff theorem..................................................................... 43Bibliography.............................................................................................................................. 46
LA - eng
KW - Vietoris homology theory with compact carriers in arbitrary metric spaces; extension of Alexandroff's homological dimension theorem to a class of locally compact metric spaces; Phragmen-Brouwer theorem for arbitrary metric spaces; covering dimension; compactly dimensioned spaces
UR - http://eudml.org/doc/268548
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.