Borel equivalence and isomorphism of coanalytic sets

Douglas Cenzer; R. Daniel Mauldin

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1984

Abstract

top
CONTENTSIntroduction...............................................................51. Coanalytic sets and admissible ordinals...............72. The hypothesis of constructibility........................123. Ordinal partitions and non-isomorphic sets.........164. Thin non-isomorphic sets....................................195. The hypothesis of projective determinacy...........226. Further results and open questions....................25References.............................................................28

How to cite

top

Douglas Cenzer, and R. Daniel Mauldin. Borel equivalence and isomorphism of coanalytic sets. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1984. <http://eudml.org/doc/268558>.

@book{DouglasCenzer1984,
abstract = {CONTENTSIntroduction...............................................................51. Coanalytic sets and admissible ordinals...............72. The hypothesis of constructibility........................123. Ordinal partitions and non-isomorphic sets.........164. Thin non-isomorphic sets....................................195. The hypothesis of projective determinacy...........226. Further results and open questions....................25References.............................................................28},
author = {Douglas Cenzer, R. Daniel Mauldin},
keywords = {axiom of constructibility; coanalytic sets; admissible decompositions; Borel equivalence; Borel isomorphism; projective games},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Borel equivalence and isomorphism of coanalytic sets},
url = {http://eudml.org/doc/268558},
year = {1984},
}

TY - BOOK
AU - Douglas Cenzer
AU - R. Daniel Mauldin
TI - Borel equivalence and isomorphism of coanalytic sets
PY - 1984
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction...............................................................51. Coanalytic sets and admissible ordinals...............72. The hypothesis of constructibility........................123. Ordinal partitions and non-isomorphic sets.........164. Thin non-isomorphic sets....................................195. The hypothesis of projective determinacy...........226. Further results and open questions....................25References.............................................................28
LA - eng
KW - axiom of constructibility; coanalytic sets; admissible decompositions; Borel equivalence; Borel isomorphism; projective games
UR - http://eudml.org/doc/268558
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.