top
CONTENTSIntroduction...............................................................51. Coanalytic sets and admissible ordinals...............72. The hypothesis of constructibility........................123. Ordinal partitions and non-isomorphic sets.........164. Thin non-isomorphic sets....................................195. The hypothesis of projective determinacy...........226. Further results and open questions....................25References.............................................................28
Douglas Cenzer, and R. Daniel Mauldin. Borel equivalence and isomorphism of coanalytic sets. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1984. <http://eudml.org/doc/268558>.
@book{DouglasCenzer1984, abstract = {CONTENTSIntroduction...............................................................51. Coanalytic sets and admissible ordinals...............72. The hypothesis of constructibility........................123. Ordinal partitions and non-isomorphic sets.........164. Thin non-isomorphic sets....................................195. The hypothesis of projective determinacy...........226. Further results and open questions....................25References.............................................................28}, author = {Douglas Cenzer, R. Daniel Mauldin}, keywords = {axiom of constructibility; coanalytic sets; admissible decompositions; Borel equivalence; Borel isomorphism; projective games}, language = {eng}, location = {Warszawa}, publisher = {Instytut Matematyczny Polskiej Akademi Nauk}, title = {Borel equivalence and isomorphism of coanalytic sets}, url = {http://eudml.org/doc/268558}, year = {1984}, }
TY - BOOK AU - Douglas Cenzer AU - R. Daniel Mauldin TI - Borel equivalence and isomorphism of coanalytic sets PY - 1984 CY - Warszawa PB - Instytut Matematyczny Polskiej Akademi Nauk AB - CONTENTSIntroduction...............................................................51. Coanalytic sets and admissible ordinals...............72. The hypothesis of constructibility........................123. Ordinal partitions and non-isomorphic sets.........164. Thin non-isomorphic sets....................................195. The hypothesis of projective determinacy...........226. Further results and open questions....................25References.............................................................28 LA - eng KW - axiom of constructibility; coanalytic sets; admissible decompositions; Borel equivalence; Borel isomorphism; projective games UR - http://eudml.org/doc/268558 ER -