Borel equivalence and isomorphism of coanalytic sets

Douglas Cenzer; R. Daniel Mauldin

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1984

Abstract

top
CONTENTSIntroduction...............................................................51. Coanalytic sets and admissible ordinals...............72. The hypothesis of constructibility........................123. Ordinal partitions and non-isomorphic sets.........164. Thin non-isomorphic sets....................................195. The hypothesis of projective determinacy...........226. Further results and open questions....................25References.............................................................28

How to cite

top

Douglas Cenzer, and R. Daniel Mauldin. Borel equivalence and isomorphism of coanalytic sets. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1984. <http://eudml.org/doc/268558>.

@book{DouglasCenzer1984,
abstract = {CONTENTSIntroduction...............................................................51. Coanalytic sets and admissible ordinals...............72. The hypothesis of constructibility........................123. Ordinal partitions and non-isomorphic sets.........164. Thin non-isomorphic sets....................................195. The hypothesis of projective determinacy...........226. Further results and open questions....................25References.............................................................28},
author = {Douglas Cenzer, R. Daniel Mauldin},
keywords = {axiom of constructibility; coanalytic sets; admissible decompositions; Borel equivalence; Borel isomorphism; projective games},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Borel equivalence and isomorphism of coanalytic sets},
url = {http://eudml.org/doc/268558},
year = {1984},
}

TY - BOOK
AU - Douglas Cenzer
AU - R. Daniel Mauldin
TI - Borel equivalence and isomorphism of coanalytic sets
PY - 1984
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction...............................................................51. Coanalytic sets and admissible ordinals...............72. The hypothesis of constructibility........................123. Ordinal partitions and non-isomorphic sets.........164. Thin non-isomorphic sets....................................195. The hypothesis of projective determinacy...........226. Further results and open questions....................25References.............................................................28
LA - eng
KW - axiom of constructibility; coanalytic sets; admissible decompositions; Borel equivalence; Borel isomorphism; projective games
UR - http://eudml.org/doc/268558
ER -

NotesEmbed ?

top

You must be logged in to post comments.