A theory of extensions of quasi-algebras to algebras

J. Słomiński

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1964

Abstract

top
CONTENTSINTRODUCTION...................................................................................................................................................................... 31. TERMS NOTATION AND LEMMAS.................................................................................................................................. 4A. Quasi-algebras and algebras....................................................................................................................................................................... 4B. Subquasi-algebras and sets of generators............................................................................................................................................... 4C. Homomorphisms of quasi-algebras.......................................................................................................................................................... 5D. Direct. products quasi-algebras and homomorphisms.......................................................................................................................... 10E. Congruences of quasi-algebras and homomorphisms.......................................................................................................................... 10F. Terms and equations...................................................................................................................................................................................... 14G. Analytical operations defined by terms in quasi-algebras...................................................................................................................... 15H. Tensor product of quasi-algebras................................................................................................................................................................ 16I. The general transposition law of operations and algebras of homomorphisms and of bilinears of quasi-algebras.................. 17J. The form of congruences determined by terms......................................................................................................................................... 20§ 2. ON EXTENDING QUASI-ALGEBRAS TO ALGEBRAS............................................................................................................................ 21§ 3. ON THE COMMON EXTENSION OF QUASI-ALGEBRAS TO ALGEBRAS.......................................................................................... 30§ 4. A THEORY OF EXTENSIONS OF MAP-SYSTEMS IN EQUATIONALLY DEFINABLE CLASSES OF ALGEBRAS........................ 33A. Map-systems in equationally definable clauses of algebras.................................................................................................................. 33B. Quasi-ideals and ideals in A-map-systems...................................................................................................................... 35C. On dividing map-systems by ideals............................................................................................................................................................ 41D. Operator-systems in equationally definable classes of algebras......................................................................................................... 43E. The equivalence of the notions of quasi-ideals and ideals for A-operator-systems over R..................................... 45§ 5. ALGEBRAS WITH DIFFERENTIAL OPERATORS................................................................................................................................... 52A. Algebras with differential operators over commutative, algebras R...................................................................................................... 53B. Algebras with differential operators in the classes in which the general transposition law of operations holds........................ 54References............................................................................................................................................................................................................ 61

How to cite

top

J. Słomiński. A theory of extensions of quasi-algebras to algebras. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1964. <http://eudml.org/doc/268560>.

@book{J1964,
abstract = {CONTENTSINTRODUCTION...................................................................................................................................................................... 31. TERMS NOTATION AND LEMMAS.................................................................................................................................. 4A. Quasi-algebras and algebras....................................................................................................................................................................... 4B. Subquasi-algebras and sets of generators............................................................................................................................................... 4C. Homomorphisms of quasi-algebras.......................................................................................................................................................... 5D. Direct. products quasi-algebras and homomorphisms.......................................................................................................................... 10E. Congruences of quasi-algebras and homomorphisms.......................................................................................................................... 10F. Terms and equations...................................................................................................................................................................................... 14G. Analytical operations defined by terms in quasi-algebras...................................................................................................................... 15H. Tensor product of quasi-algebras................................................................................................................................................................ 16I. The general transposition law of operations and algebras of homomorphisms and of bilinears of quasi-algebras.................. 17J. The form of congruences determined by terms......................................................................................................................................... 20§ 2. ON EXTENDING QUASI-ALGEBRAS TO ALGEBRAS............................................................................................................................ 21§ 3. ON THE COMMON EXTENSION OF QUASI-ALGEBRAS TO ALGEBRAS.......................................................................................... 30§ 4. A THEORY OF EXTENSIONS OF MAP-SYSTEMS IN EQUATIONALLY DEFINABLE CLASSES OF ALGEBRAS........................ 33A. Map-systems in equationally definable clauses of algebras.................................................................................................................. 33B. Quasi-ideals and ideals in A-map-systems...................................................................................................................... 35C. On dividing map-systems by ideals............................................................................................................................................................ 41D. Operator-systems in equationally definable classes of algebras......................................................................................................... 43E. The equivalence of the notions of quasi-ideals and ideals for A-operator-systems over R..................................... 45§ 5. ALGEBRAS WITH DIFFERENTIAL OPERATORS................................................................................................................................... 52A. Algebras with differential operators over commutative, algebras R...................................................................................................... 53B. Algebras with differential operators in the classes in which the general transposition law of operations holds........................ 54References............................................................................................................................................................................................................ 61},
author = {J. Słomiński},
keywords = {general algebraic structures},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {A theory of extensions of quasi-algebras to algebras},
url = {http://eudml.org/doc/268560},
year = {1964},
}

TY - BOOK
AU - J. Słomiński
TI - A theory of extensions of quasi-algebras to algebras
PY - 1964
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSINTRODUCTION...................................................................................................................................................................... 31. TERMS NOTATION AND LEMMAS.................................................................................................................................. 4A. Quasi-algebras and algebras....................................................................................................................................................................... 4B. Subquasi-algebras and sets of generators............................................................................................................................................... 4C. Homomorphisms of quasi-algebras.......................................................................................................................................................... 5D. Direct. products quasi-algebras and homomorphisms.......................................................................................................................... 10E. Congruences of quasi-algebras and homomorphisms.......................................................................................................................... 10F. Terms and equations...................................................................................................................................................................................... 14G. Analytical operations defined by terms in quasi-algebras...................................................................................................................... 15H. Tensor product of quasi-algebras................................................................................................................................................................ 16I. The general transposition law of operations and algebras of homomorphisms and of bilinears of quasi-algebras.................. 17J. The form of congruences determined by terms......................................................................................................................................... 20§ 2. ON EXTENDING QUASI-ALGEBRAS TO ALGEBRAS............................................................................................................................ 21§ 3. ON THE COMMON EXTENSION OF QUASI-ALGEBRAS TO ALGEBRAS.......................................................................................... 30§ 4. A THEORY OF EXTENSIONS OF MAP-SYSTEMS IN EQUATIONALLY DEFINABLE CLASSES OF ALGEBRAS........................ 33A. Map-systems in equationally definable clauses of algebras.................................................................................................................. 33B. Quasi-ideals and ideals in A-map-systems...................................................................................................................... 35C. On dividing map-systems by ideals............................................................................................................................................................ 41D. Operator-systems in equationally definable classes of algebras......................................................................................................... 43E. The equivalence of the notions of quasi-ideals and ideals for A-operator-systems over R..................................... 45§ 5. ALGEBRAS WITH DIFFERENTIAL OPERATORS................................................................................................................................... 52A. Algebras with differential operators over commutative, algebras R...................................................................................................... 53B. Algebras with differential operators in the classes in which the general transposition law of operations holds........................ 54References............................................................................................................................................................................................................ 61
LA - eng
KW - general algebraic structures
UR - http://eudml.org/doc/268560
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.