Borel spaces
K. P. S. Bhaskara Rao; B. V. Rao
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1981
Access Full Book
topAbstract
topHow to cite
topK. P. S. Bhaskara Rao, and B. V. Rao. Borel spaces. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1981. <http://eudml.org/doc/268562>.
@book{K1981,
abstract = {CONTENTSIntroduction............................................................................... 5Chapter 1. Borel spaces........................................................ 7 § 1. Borel spaces....................................................... 7 § 2. Classical descriptive set theory............................... 10 § 3. Measure and category............................................... 12 § 4. Countably generated structures.............................. 13 § 5. Product spaces........................................................... 17 § 6. Minimal generators.................................................... 19 § 7. Rigid Borel spaces..................................................... 20Chapter 2. Blackwell spaces................................................ 21 § 8. Blackwell spaces............................................... 21 § 9. Nonanalytic Blackwell spaces................................. 24 § 10. Coanalytic Blackwell spaces................................. 26 § 11. Combinatorial properties........................................ 27Chapter 3. Atomless structures........................................... 29 § 12. Atomless structures........................................ 29 § 13. Atomless substructures of given structures....... 31 § 14. Separated atomless structures............................. 35 § 15. Combinatorial properties........................................ 36 § 16. Measures on atomless structures........................ 40Chapter 4. Lattice of Borel structures.................................. 41 § 17. Lattice of Borel structures....................................... 41 § 18. Atoms and antiatoms.............................................. 42 § 19. Complementation.................................................... 45 § 20. A sublattice of $L_X$............................................... 54 § 21. Embedding................................................................ 56 § 22. Power of $L_X$......................................................... 56 § 23. Isomorphism problem............................................ 58References............................................................................... 60Index to problems................................................................... 63},
author = {K. P. S. Bhaskara Rao, B. V. Rao},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Borel spaces},
url = {http://eudml.org/doc/268562},
year = {1981},
}
TY - BOOK
AU - K. P. S. Bhaskara Rao
AU - B. V. Rao
TI - Borel spaces
PY - 1981
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction............................................................................... 5Chapter 1. Borel spaces........................................................ 7 § 1. Borel spaces....................................................... 7 § 2. Classical descriptive set theory............................... 10 § 3. Measure and category............................................... 12 § 4. Countably generated structures.............................. 13 § 5. Product spaces........................................................... 17 § 6. Minimal generators.................................................... 19 § 7. Rigid Borel spaces..................................................... 20Chapter 2. Blackwell spaces................................................ 21 § 8. Blackwell spaces............................................... 21 § 9. Nonanalytic Blackwell spaces................................. 24 § 10. Coanalytic Blackwell spaces................................. 26 § 11. Combinatorial properties........................................ 27Chapter 3. Atomless structures........................................... 29 § 12. Atomless structures........................................ 29 § 13. Atomless substructures of given structures....... 31 § 14. Separated atomless structures............................. 35 § 15. Combinatorial properties........................................ 36 § 16. Measures on atomless structures........................ 40Chapter 4. Lattice of Borel structures.................................. 41 § 17. Lattice of Borel structures....................................... 41 § 18. Atoms and antiatoms.............................................. 42 § 19. Complementation.................................................... 45 § 20. A sublattice of $L_X$............................................... 54 § 21. Embedding................................................................ 56 § 22. Power of $L_X$......................................................... 56 § 23. Isomorphism problem............................................ 58References............................................................................... 60Index to problems................................................................... 63
LA - eng
UR - http://eudml.org/doc/268562
ER -
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.