Borel spaces

K. P. S. Bhaskara Rao; B. V. Rao

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1981

Abstract

top
CONTENTSIntroduction............................................................................... 5Chapter 1. Borel spaces........................................................ 7 § 1. Borel spaces....................................................... 7 § 2. Classical descriptive set theory............................... 10 § 3. Measure and category............................................... 12 § 4. Countably generated structures.............................. 13 § 5. Product spaces........................................................... 17 § 6. Minimal generators.................................................... 19 § 7. Rigid Borel spaces..................................................... 20Chapter 2. Blackwell spaces................................................ 21 § 8. Blackwell spaces............................................... 21 § 9. Nonanalytic Blackwell spaces................................. 24 § 10. Coanalytic Blackwell spaces................................. 26 § 11. Combinatorial properties........................................ 27Chapter 3. Atomless structures........................................... 29 § 12. Atomless structures........................................ 29 § 13. Atomless substructures of given structures....... 31 § 14. Separated atomless structures............................. 35 § 15. Combinatorial properties........................................ 36 § 16. Measures on atomless structures........................ 40Chapter 4. Lattice of Borel structures.................................. 41 § 17. Lattice of Borel structures....................................... 41 § 18. Atoms and antiatoms.............................................. 42 § 19. Complementation.................................................... 45 § 20. A sublattice of L X ............................................... 54 § 21. Embedding................................................................ 56 § 22. Power of L X ......................................................... 56 § 23. Isomorphism problem............................................ 58References............................................................................... 60Index to problems................................................................... 63

How to cite

top

K. P. S. Bhaskara Rao, and B. V. Rao. Borel spaces. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1981. <http://eudml.org/doc/268562>.

@book{K1981,
abstract = {CONTENTSIntroduction............................................................................... 5Chapter 1. Borel spaces........................................................ 7 § 1. Borel spaces....................................................... 7 § 2. Classical descriptive set theory............................... 10 § 3. Measure and category............................................... 12 § 4. Countably generated structures.............................. 13 § 5. Product spaces........................................................... 17 § 6. Minimal generators.................................................... 19 § 7. Rigid Borel spaces..................................................... 20Chapter 2. Blackwell spaces................................................ 21 § 8. Blackwell spaces............................................... 21 § 9. Nonanalytic Blackwell spaces................................. 24 § 10. Coanalytic Blackwell spaces................................. 26 § 11. Combinatorial properties........................................ 27Chapter 3. Atomless structures........................................... 29 § 12. Atomless structures........................................ 29 § 13. Atomless substructures of given structures....... 31 § 14. Separated atomless structures............................. 35 § 15. Combinatorial properties........................................ 36 § 16. Measures on atomless structures........................ 40Chapter 4. Lattice of Borel structures.................................. 41 § 17. Lattice of Borel structures....................................... 41 § 18. Atoms and antiatoms.............................................. 42 § 19. Complementation.................................................... 45 § 20. A sublattice of $L_X$............................................... 54 § 21. Embedding................................................................ 56 § 22. Power of $L_X$......................................................... 56 § 23. Isomorphism problem............................................ 58References............................................................................... 60Index to problems................................................................... 63},
author = {K. P. S. Bhaskara Rao, B. V. Rao},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Borel spaces},
url = {http://eudml.org/doc/268562},
year = {1981},
}

TY - BOOK
AU - K. P. S. Bhaskara Rao
AU - B. V. Rao
TI - Borel spaces
PY - 1981
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction............................................................................... 5Chapter 1. Borel spaces........................................................ 7 § 1. Borel spaces....................................................... 7 § 2. Classical descriptive set theory............................... 10 § 3. Measure and category............................................... 12 § 4. Countably generated structures.............................. 13 § 5. Product spaces........................................................... 17 § 6. Minimal generators.................................................... 19 § 7. Rigid Borel spaces..................................................... 20Chapter 2. Blackwell spaces................................................ 21 § 8. Blackwell spaces............................................... 21 § 9. Nonanalytic Blackwell spaces................................. 24 § 10. Coanalytic Blackwell spaces................................. 26 § 11. Combinatorial properties........................................ 27Chapter 3. Atomless structures........................................... 29 § 12. Atomless structures........................................ 29 § 13. Atomless substructures of given structures....... 31 § 14. Separated atomless structures............................. 35 § 15. Combinatorial properties........................................ 36 § 16. Measures on atomless structures........................ 40Chapter 4. Lattice of Borel structures.................................. 41 § 17. Lattice of Borel structures....................................... 41 § 18. Atoms and antiatoms.............................................. 42 § 19. Complementation.................................................... 45 § 20. A sublattice of $L_X$............................................... 54 § 21. Embedding................................................................ 56 § 22. Power of $L_X$......................................................... 56 § 23. Isomorphism problem............................................ 58References............................................................................... 60Index to problems................................................................... 63
LA - eng
UR - http://eudml.org/doc/268562
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.