Noncharacteristic mixed problems for hyperbolic systems of the first order

Ewa Zadrzyńska

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1991

Abstract

top
CONTENTS1. Introduction....................................................................................................................................................52. Notations and preliminaries .........................................................................................................................11 2.1. Function spaces and spaces of distributions............................................................................................11 2.2. Perturbations of linear operators.............................................................................................................20 2.3. Properties of matrices..............................................................................................................................243. A boundary value problem for a linear hyperbolic system of the first order in a halfspace...........................26 3.1. Assumptions.............................................................................................................................................27 3.2. Construction of a symmetrizer..................................................................................................................31 3.3. An estimate of a solution of the boundary value problem (3.1)-(3.2) in L ² η - n o r m ............................57 3.4. An estimate of a solution of the problem formally adjoint to (3.1)-(3.2) in L ² - η - n o r m .......................85 3.5. Existence and uniqueness of solution of the boundary value problem (3.1)-(3.2)....................................91 3.6. An estimate of a solution of the Cauchy problem for system (3.1) in H η s -norm...........................954. A mixed problem for a system of linear hyperbolic equations of the first order in a halfspace....................101 4.1. A mixed problem with nonzero initial condition........................................................................................101 4.2. A mixed problem with zero initial condition..............................................................................................1275. A mixed problem for a system of linear hyperbolic equations of the first order in a bounded domain.........1286. A mixed problem for a nonlinear system of hyperbolic equations of the first order.....................................141References....................................................................................................................................................1451991 Mathematics Subject Classification: Primary 35L45, 35L50

How to cite

top

Ewa Zadrzyńska. Noncharacteristic mixed problems for hyperbolic systems of the first order. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1991. <http://eudml.org/doc/268579>.

@book{EwaZadrzyńska1991,
abstract = {CONTENTS1. Introduction....................................................................................................................................................52. Notations and preliminaries .........................................................................................................................11 2.1. Function spaces and spaces of distributions............................................................................................11 2.2. Perturbations of linear operators.............................................................................................................20 2.3. Properties of matrices..............................................................................................................................243. A boundary value problem for a linear hyperbolic system of the first order in a halfspace...........................26 3.1. Assumptions.............................................................................................................................................27 3.2. Construction of a symmetrizer..................................................................................................................31 3.3. An estimate of a solution of the boundary value problem (3.1)-(3.2) in $L²_\{η\}-norm$............................57 3.4. An estimate of a solution of the problem formally adjoint to (3.1)-(3.2) in $L²_\{-η\}-norm$.......................85 3.5. Existence and uniqueness of solution of the boundary value problem (3.1)-(3.2)....................................91 3.6. An estimate of a solution of the Cauchy problem for system (3.1) in $H^\{s\}_\{η\}$-norm...........................954. A mixed problem for a system of linear hyperbolic equations of the first order in a halfspace....................101 4.1. A mixed problem with nonzero initial condition........................................................................................101 4.2. A mixed problem with zero initial condition..............................................................................................1275. A mixed problem for a system of linear hyperbolic equations of the first order in a bounded domain.........1286. A mixed problem for a nonlinear system of hyperbolic equations of the first order.....................................141References....................................................................................................................................................1451991 Mathematics Subject Classification: Primary 35L45, 35L50},
author = {Ewa Zadrzyńska},
keywords = {sufficient conditions; existence of unique solutions; linear systems; nonlinear systems},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Noncharacteristic mixed problems for hyperbolic systems of the first order},
url = {http://eudml.org/doc/268579},
year = {1991},
}

TY - BOOK
AU - Ewa Zadrzyńska
TI - Noncharacteristic mixed problems for hyperbolic systems of the first order
PY - 1991
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTS1. Introduction....................................................................................................................................................52. Notations and preliminaries .........................................................................................................................11 2.1. Function spaces and spaces of distributions............................................................................................11 2.2. Perturbations of linear operators.............................................................................................................20 2.3. Properties of matrices..............................................................................................................................243. A boundary value problem for a linear hyperbolic system of the first order in a halfspace...........................26 3.1. Assumptions.............................................................................................................................................27 3.2. Construction of a symmetrizer..................................................................................................................31 3.3. An estimate of a solution of the boundary value problem (3.1)-(3.2) in $L²_{η}-norm$............................57 3.4. An estimate of a solution of the problem formally adjoint to (3.1)-(3.2) in $L²_{-η}-norm$.......................85 3.5. Existence and uniqueness of solution of the boundary value problem (3.1)-(3.2)....................................91 3.6. An estimate of a solution of the Cauchy problem for system (3.1) in $H^{s}_{η}$-norm...........................954. A mixed problem for a system of linear hyperbolic equations of the first order in a halfspace....................101 4.1. A mixed problem with nonzero initial condition........................................................................................101 4.2. A mixed problem with zero initial condition..............................................................................................1275. A mixed problem for a system of linear hyperbolic equations of the first order in a bounded domain.........1286. A mixed problem for a nonlinear system of hyperbolic equations of the first order.....................................141References....................................................................................................................................................1451991 Mathematics Subject Classification: Primary 35L45, 35L50
LA - eng
KW - sufficient conditions; existence of unique solutions; linear systems; nonlinear systems
UR - http://eudml.org/doc/268579
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.