The automorphism groups and endomorphism rings of torsion-free abelian groups of rank two
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1967
Access Full Book
topAbstract
topHow to cite
topM. Król. The automorphism groups and endomorphism rings of torsion-free abelian groups of rank two. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1967. <http://eudml.org/doc/268587>.
@book{M1967,
abstract = {CONTENTS§ 1. Introduction.......................................................................................................................................... 5§ 2. Definitions and lemmas................................................................................................................... 7§ 3. Theorem on the isomorphism of subdirect sums with the same kernels............................. 15§ 4. The group of automorphisms of a torsion-free abelian group of rank two............................. 53§ 5. The ring of endomorphisms of torsion-free abelian group of rank two................................... 63References.................................................................................................................................................. 73},
author = {M. Król},
keywords = {group theory},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {The automorphism groups and endomorphism rings of torsion-free abelian groups of rank two},
url = {http://eudml.org/doc/268587},
year = {1967},
}
TY - BOOK
AU - M. Król
TI - The automorphism groups and endomorphism rings of torsion-free abelian groups of rank two
PY - 1967
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTS§ 1. Introduction.......................................................................................................................................... 5§ 2. Definitions and lemmas................................................................................................................... 7§ 3. Theorem on the isomorphism of subdirect sums with the same kernels............................. 15§ 4. The group of automorphisms of a torsion-free abelian group of rank two............................. 53§ 5. The ring of endomorphisms of torsion-free abelian group of rank two................................... 63References.................................................................................................................................................. 73
LA - eng
KW - group theory
UR - http://eudml.org/doc/268587
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.