Topological rings of sets and the theory of vector measures
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1978
Access Full Book
topAbstract
topHow to cite
topV. M. Bogdan, and R. A. Oberle. Topological rings of sets and the theory of vector measures. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1978. <http://eudml.org/doc/268597>.
@book{V1978,
abstract = {CONTENTSIntroduction............................................................................................................................................................... 5Chapter I. Topological rings of sets 1.1. Definition and basic properties of topological rings of sets............................................................... 7 1.2. Topological rings of sets generated by Rickart families of contents................................................ 12Chapter II. The space of Rickart vector charges on a ring of sets 2.1. Definition and basic properties of Rickart vector charges................................................................... 23 2.2. Pointwise convergent sequences of Rickart vector charges.............................................................. 28Chapter III. Equicontinuous sequences of Rickart vector charges 3.1. Vectorial generalizations of the Nikodym boundedness theorem..................................................... 35 3.2. Generalizations of the Vitali-Hahn-Saks theorem................................................................................. 39Chapter IV. Weak compactness and decompositions of strongly bounded vector charges 4.1. Weak compactness in the spaces of finitely additive scalar charges on an algebra of sets................................................................................................................................................ 42 4.2. Decompositions of strongly bounded vector charges.......................................................................... 45Chapter V. Extensions of Rickart vector measures 5.1. Extensions of countably additive Rickart vector measures.................................................................. 52 5.2. General extension of vector measures.................................................................................................... 55Summary of definitions............................................................................................................................................ 67References................................................................................................................................................................. 68},
author = {V. M. Bogdan, R. A. Oberle},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Topological rings of sets and the theory of vector measures},
url = {http://eudml.org/doc/268597},
year = {1978},
}
TY - BOOK
AU - V. M. Bogdan
AU - R. A. Oberle
TI - Topological rings of sets and the theory of vector measures
PY - 1978
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction............................................................................................................................................................... 5Chapter I. Topological rings of sets 1.1. Definition and basic properties of topological rings of sets............................................................... 7 1.2. Topological rings of sets generated by Rickart families of contents................................................ 12Chapter II. The space of Rickart vector charges on a ring of sets 2.1. Definition and basic properties of Rickart vector charges................................................................... 23 2.2. Pointwise convergent sequences of Rickart vector charges.............................................................. 28Chapter III. Equicontinuous sequences of Rickart vector charges 3.1. Vectorial generalizations of the Nikodym boundedness theorem..................................................... 35 3.2. Generalizations of the Vitali-Hahn-Saks theorem................................................................................. 39Chapter IV. Weak compactness and decompositions of strongly bounded vector charges 4.1. Weak compactness in the spaces of finitely additive scalar charges on an algebra of sets................................................................................................................................................ 42 4.2. Decompositions of strongly bounded vector charges.......................................................................... 45Chapter V. Extensions of Rickart vector measures 5.1. Extensions of countably additive Rickart vector measures.................................................................. 52 5.2. General extension of vector measures.................................................................................................... 55Summary of definitions............................................................................................................................................ 67References................................................................................................................................................................. 68
LA - eng
UR - http://eudml.org/doc/268597
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.