top
CONTENTSIntroduction...............................................................................................................................................5§0. Fundamental definitions and notations...............................................................................................7§1. Subadditive measure on projectors of a von Neumann algebra.........................................................8§2. m-measurable operators. Convergence in measure.........................................................................10§3. Spaces of m-measurable operators.......................................................................................22§4. Some theorems on the convergence of a dominated sequence of m-measurable operators...........32§5. Some characterizations of m-convergence.......................................................................................42§6. Concrete examples...........................................................................................................................45§7. Concluding remarks..........................................................................................................................60References.............................................................................................................................................64
Leszek J. Ciach. Subadditive measures on projectors of a von Neumann algebra. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1990. <http://eudml.org/doc/268600>.
@book{LeszekJ1990, abstract = {CONTENTSIntroduction...............................................................................................................................................5§0. Fundamental definitions and notations...............................................................................................7§1. Subadditive measure on projectors of a von Neumann algebra.........................................................8§2. m-measurable operators. Convergence in measure.........................................................................10§3. Spaces $L^a$ of m-measurable operators.......................................................................................22§4. Some theorems on the convergence of a dominated sequence of m-measurable operators...........32§5. Some characterizations of m-convergence.......................................................................................42§6. Concrete examples...........................................................................................................................45§7. Concluding remarks..........................................................................................................................60References.............................................................................................................................................64}, author = {Leszek J. Ciach}, keywords = {subadditive measures on the space of projections of a von Neumann algebra; Murray-von Neumann equivalence classes; measurable operators; convergence in measure; -spaces; dominated convergence}, language = {eng}, location = {Warszawa}, publisher = {Instytut Matematyczny Polskiej Akademi Nauk}, title = {Subadditive measures on projectors of a von Neumann algebra}, url = {http://eudml.org/doc/268600}, year = {1990}, }
TY - BOOK AU - Leszek J. Ciach TI - Subadditive measures on projectors of a von Neumann algebra PY - 1990 CY - Warszawa PB - Instytut Matematyczny Polskiej Akademi Nauk AB - CONTENTSIntroduction...............................................................................................................................................5§0. Fundamental definitions and notations...............................................................................................7§1. Subadditive measure on projectors of a von Neumann algebra.........................................................8§2. m-measurable operators. Convergence in measure.........................................................................10§3. Spaces $L^a$ of m-measurable operators.......................................................................................22§4. Some theorems on the convergence of a dominated sequence of m-measurable operators...........32§5. Some characterizations of m-convergence.......................................................................................42§6. Concrete examples...........................................................................................................................45§7. Concluding remarks..........................................................................................................................60References.............................................................................................................................................64 LA - eng KW - subadditive measures on the space of projections of a von Neumann algebra; Murray-von Neumann equivalence classes; measurable operators; convergence in measure; -spaces; dominated convergence UR - http://eudml.org/doc/268600 ER -