Subadditive measures on projectors of a von Neumann algebra
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1990
Access Full Book
topAbstract
topHow to cite
topLeszek J. Ciach. Subadditive measures on projectors of a von Neumann algebra. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1990. <http://eudml.org/doc/268600>.
@book{LeszekJ1990,
abstract = {CONTENTSIntroduction...............................................................................................................................................5§0. Fundamental definitions and notations...............................................................................................7§1. Subadditive measure on projectors of a von Neumann algebra.........................................................8§2. m-measurable operators. Convergence in measure.........................................................................10§3. Spaces $L^a$ of m-measurable operators.......................................................................................22§4. Some theorems on the convergence of a dominated sequence of m-measurable operators...........32§5. Some characterizations of m-convergence.......................................................................................42§6. Concrete examples...........................................................................................................................45§7. Concluding remarks..........................................................................................................................60References.............................................................................................................................................64},
author = {Leszek J. Ciach},
keywords = {subadditive measures on the space of projections of a von Neumann algebra; Murray-von Neumann equivalence classes; measurable operators; convergence in measure; -spaces; dominated convergence},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Subadditive measures on projectors of a von Neumann algebra},
url = {http://eudml.org/doc/268600},
year = {1990},
}
TY - BOOK
AU - Leszek J. Ciach
TI - Subadditive measures on projectors of a von Neumann algebra
PY - 1990
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction...............................................................................................................................................5§0. Fundamental definitions and notations...............................................................................................7§1. Subadditive measure on projectors of a von Neumann algebra.........................................................8§2. m-measurable operators. Convergence in measure.........................................................................10§3. Spaces $L^a$ of m-measurable operators.......................................................................................22§4. Some theorems on the convergence of a dominated sequence of m-measurable operators...........32§5. Some characterizations of m-convergence.......................................................................................42§6. Concrete examples...........................................................................................................................45§7. Concluding remarks..........................................................................................................................60References.............................................................................................................................................64
LA - eng
KW - subadditive measures on the space of projections of a von Neumann algebra; Murray-von Neumann equivalence classes; measurable operators; convergence in measure; -spaces; dominated convergence
UR - http://eudml.org/doc/268600
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.