top
CONTENTS1. Introduction...................................................................................................52. The Alaoglu theorem for operators...............................................................63. Vector-valued means....................................................................................74. The Riesz representation theorems for operators.......................................125. Introversion and semigroups of vector-valued means.................................166. Invariant vector-valued means....................................................................207. Vector-valued almost periodic functions......................................................248. Vector-valued weakly almost periodic functions..........................................27References.....................................................................................................341991 Mathematics Subject Classification: Primary 43A07, 43A60, 46B25; Secondary 46E40, 47A67, 47D03.
Chuanyi Zhang. Vector-valued means and their applications in some vector-valued function spaces. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1994. <http://eudml.org/doc/268609>.
@book{ChuanyiZhang1994, abstract = {CONTENTS1. Introduction...................................................................................................52. The Alaoglu theorem for operators...............................................................63. Vector-valued means....................................................................................74. The Riesz representation theorems for operators.......................................125. Introversion and semigroups of vector-valued means.................................166. Invariant vector-valued means....................................................................207. Vector-valued almost periodic functions......................................................248. Vector-valued weakly almost periodic functions..........................................27References.....................................................................................................341991 Mathematics Subject Classification: Primary 43A07, 43A60, 46B25; Secondary 46E40, 47A67, 47D03.}, author = {Chuanyi Zhang}, keywords = {vector-valued means; mean; Riesz-representation theorem; vector-valued functions; semitopological semigroup; weakly almost periodic functions; invariant mean}, language = {eng}, location = {Warszawa}, publisher = {Instytut Matematyczny Polskiej Akademi Nauk}, title = {Vector-valued means and their applications in some vector-valued function spaces}, url = {http://eudml.org/doc/268609}, year = {1994}, }
TY - BOOK AU - Chuanyi Zhang TI - Vector-valued means and their applications in some vector-valued function spaces PY - 1994 CY - Warszawa PB - Instytut Matematyczny Polskiej Akademi Nauk AB - CONTENTS1. Introduction...................................................................................................52. The Alaoglu theorem for operators...............................................................63. Vector-valued means....................................................................................74. The Riesz representation theorems for operators.......................................125. Introversion and semigroups of vector-valued means.................................166. Invariant vector-valued means....................................................................207. Vector-valued almost periodic functions......................................................248. Vector-valued weakly almost periodic functions..........................................27References.....................................................................................................341991 Mathematics Subject Classification: Primary 43A07, 43A60, 46B25; Secondary 46E40, 47A67, 47D03. LA - eng KW - vector-valued means; mean; Riesz-representation theorem; vector-valued functions; semitopological semigroup; weakly almost periodic functions; invariant mean UR - http://eudml.org/doc/268609 ER -