On sequences of ±1's defined by binary patterns

David W. Boyd; Janice Cook; Patrick Morton

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1989

Abstract

top
CONTENTS1. Introduction..............................................................52. The matrix recursion................................................83. The characteristic polynomial of A.........................124. The autocorrelation tree........................................155. The roots of the period polynomials.......................196. A recurrence relation for s p ( x ) ..........................257. An explicit formula..................................................308. The limit function....................................................349. The case P = 111...................................................4210. The exceptional cases.........................................4511. The structure of the autocorrelation tree..............51Appendix....................................................................58References................................................................591980 Mathematics Subject Classification: Primary 10A30, 10H25

How to cite

top

David W. Boyd, Janice Cook, and Patrick Morton. On sequences of ±1's defined by binary patterns. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1989. <http://eudml.org/doc/268620>.

@book{DavidW1989,
abstract = {CONTENTS1. Introduction..............................................................52. The matrix recursion................................................83. The characteristic polynomial of A.........................124. The autocorrelation tree........................................155. The roots of the period polynomials.......................196. A recurrence relation for $s_p(x)$..........................257. An explicit formula..................................................308. The limit function....................................................349. The case P = 111...................................................4210. The exceptional cases.........................................4511. The structure of the autocorrelation tree..............51Appendix....................................................................58References................................................................591980 Mathematics Subject Classification: Primary 10A30, 10H25},
author = {David W. Boyd, Janice Cook, Patrick Morton},
keywords = {binary patterns; partial sums; period polynomials autocorrelation tree; sum of digits; digit patterns; Rudin-Shapiro sequences; paper-folding sequences; binary expansion; autocorrelation tree},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {On sequences of ±1's defined by binary patterns},
url = {http://eudml.org/doc/268620},
year = {1989},
}

TY - BOOK
AU - David W. Boyd
AU - Janice Cook
AU - Patrick Morton
TI - On sequences of ±1's defined by binary patterns
PY - 1989
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTS1. Introduction..............................................................52. The matrix recursion................................................83. The characteristic polynomial of A.........................124. The autocorrelation tree........................................155. The roots of the period polynomials.......................196. A recurrence relation for $s_p(x)$..........................257. An explicit formula..................................................308. The limit function....................................................349. The case P = 111...................................................4210. The exceptional cases.........................................4511. The structure of the autocorrelation tree..............51Appendix....................................................................58References................................................................591980 Mathematics Subject Classification: Primary 10A30, 10H25
LA - eng
KW - binary patterns; partial sums; period polynomials autocorrelation tree; sum of digits; digit patterns; Rudin-Shapiro sequences; paper-folding sequences; binary expansion; autocorrelation tree
UR - http://eudml.org/doc/268620
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.