Complex series and connected sets

B. Jasek

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1966

Abstract

top
CONTENTSPREFACE..........................................................................................................................................................................3INTRODUCTION............................................................................................................................................................. 41. Notation. 2. Subject of the paper.Chapter I. DECOMPOSITION OF Σ INTO Σ 1 , Σ 2 , Σ 3 , Σ 4 INESSENTIAL RESTRICTIONOF GENERALITY ............................................................................................................................................................ 61. Families Σ k , k = 1, 2, 3, 4. 2. Families Σ 0 and Σ k 0 , k = 1, 2, 3, 4.Chapter II. FURTHER AUXILIARY THEOREMS....................................................................................................... 101. Chains of order n. 2. Further notations. 3. A sufficient condition forɅ(S) = Γ. Property (.). 4. A lemma on complex numbers. 5. Properties(..), (...) and (....). 6 A necessary and sufficient condition for Ʌ (S) = Γ.Chapter III. CASES: S 4 0 and S 1 0 ................................................................................................ 201. Case: S 4 0 . 2. Case: S 1 0 .Chapter IV. CASES: S 2 0 and S 3 0 FAMILIES ɸ(S)..................................................................... 221. Notations. 2. Preliminary remarks on ɸ(S) for S from 2 0 . 3. Generaltheorems on ɸ(S) for S from 2 0 3 0 . 4. Detailed remarks on ɸ(S). 5. Thestructure of ɸ 0 ( S ) for a special S from 3 0 Chapter V. CASE: S 3 0 , FAMILIES Ω(S)...................................................................................................... 341. Definitions of the families Ω, Ω(S), Ω k and Ω k ( S ) , k = 0, 1, 2, 3, 4.2. Families Ω k n , k = 0, 1, 2, 3, 4 and Ω n . 3. A sufficient condition forL(S) = C in the case S Ω 4 . 4. Regions Fj(z, p; e), j = 1, 2, 3, 4. 5.Families Ω 4 ( S ) . 6. Families Ω 3 ( S ) and Ω(S).Chapter VI. CASE: S 2 0 3 0 VARIOUS PROBLEMS........................................................................... 421. Property (—). 2. An example of the equality Λ(S) = Γ for S from 3 0 3. An open problem concerning Λ 0 ( S ) REFERENCES................................................................................................................................................................ 46

How to cite

top

B. Jasek. Complex series and connected sets. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1966. <http://eudml.org/doc/268622>.

@book{B1966,
abstract = {CONTENTSPREFACE..........................................................................................................................................................................3INTRODUCTION............................................................................................................................................................. 41. Notation. 2. Subject of the paper.Chapter I. DECOMPOSITION OF Σ INTO $Σ_1$, $Σ_2$, $Σ_3$, $Σ_4$ INESSENTIAL RESTRICTIONOF GENERALITY ............................................................................................................................................................ 61. Families $Σ_k$, k = 1, 2, 3, 4. 2. Families $Σ^0$ and $Σ^0_k$, k = 1, 2, 3, 4.Chapter II. FURTHER AUXILIARY THEOREMS....................................................................................................... 101. Chains of order n. 2. Further notations. 3. A sufficient condition forɅ(S) = Γ. Property (.). 4. A lemma on complex numbers. 5. Properties(..), (...) and (....). 6 A necessary and sufficient condition for Ʌ (S) = Γ.Chapter III. CASES: $S∈∑^0_4$ and $S∈∑^0_1$................................................................................................ 201. Case: $S∈∑^0_4$. 2. Case: $S∈∑^0_1$.Chapter IV. CASES: $S∈∑^0_2$ and $S∈∑^0_3$ FAMILIES ɸ(S)..................................................................... 221. Notations. 2. Preliminary remarks on ɸ(S) for S from $∑^0_2$. 3. Generaltheorems on ɸ(S) for S from $∑^0_2◡∑^0_3$. 4. Detailed remarks on ɸ(S). 5. Thestructure of $ɸ_0(S)$ for a special S from $∑^0_3$Chapter V. CASE: $S∈∑^0_3$, FAMILIES Ω(S)...................................................................................................... 341. Definitions of the families Ω, Ω(S), $Ω_k$ and $Ω_k(S)$, k = 0, 1, 2, 3, 4.2. Families $Ω^n_k$, k = 0, 1, 2, 3, 4 and $Ω^n$. 3. A sufficient condition forL(S) = C in the case $S∈Ω_4$. 4. Regions Fj(z, p; e), j = 1, 2, 3, 4. 5.Families $Ω_4(S)$. 6. Families $Ω_3(S)$ and Ω(S).Chapter VI. CASE: $S∈∑^0_2◡∑^0_3$ VARIOUS PROBLEMS........................................................................... 421. Property (—). 2. An example of the equality Λ(S) = Γ for S from $∑^0_3$3. An open problem concerning $Λ_0(S)$REFERENCES................................................................................................................................................................ 46},
author = {B. Jasek},
keywords = {series, summability},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Complex series and connected sets},
url = {http://eudml.org/doc/268622},
year = {1966},
}

TY - BOOK
AU - B. Jasek
TI - Complex series and connected sets
PY - 1966
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSPREFACE..........................................................................................................................................................................3INTRODUCTION............................................................................................................................................................. 41. Notation. 2. Subject of the paper.Chapter I. DECOMPOSITION OF Σ INTO $Σ_1$, $Σ_2$, $Σ_3$, $Σ_4$ INESSENTIAL RESTRICTIONOF GENERALITY ............................................................................................................................................................ 61. Families $Σ_k$, k = 1, 2, 3, 4. 2. Families $Σ^0$ and $Σ^0_k$, k = 1, 2, 3, 4.Chapter II. FURTHER AUXILIARY THEOREMS....................................................................................................... 101. Chains of order n. 2. Further notations. 3. A sufficient condition forɅ(S) = Γ. Property (.). 4. A lemma on complex numbers. 5. Properties(..), (...) and (....). 6 A necessary and sufficient condition for Ʌ (S) = Γ.Chapter III. CASES: $S∈∑^0_4$ and $S∈∑^0_1$................................................................................................ 201. Case: $S∈∑^0_4$. 2. Case: $S∈∑^0_1$.Chapter IV. CASES: $S∈∑^0_2$ and $S∈∑^0_3$ FAMILIES ɸ(S)..................................................................... 221. Notations. 2. Preliminary remarks on ɸ(S) for S from $∑^0_2$. 3. Generaltheorems on ɸ(S) for S from $∑^0_2◡∑^0_3$. 4. Detailed remarks on ɸ(S). 5. Thestructure of $ɸ_0(S)$ for a special S from $∑^0_3$Chapter V. CASE: $S∈∑^0_3$, FAMILIES Ω(S)...................................................................................................... 341. Definitions of the families Ω, Ω(S), $Ω_k$ and $Ω_k(S)$, k = 0, 1, 2, 3, 4.2. Families $Ω^n_k$, k = 0, 1, 2, 3, 4 and $Ω^n$. 3. A sufficient condition forL(S) = C in the case $S∈Ω_4$. 4. Regions Fj(z, p; e), j = 1, 2, 3, 4. 5.Families $Ω_4(S)$. 6. Families $Ω_3(S)$ and Ω(S).Chapter VI. CASE: $S∈∑^0_2◡∑^0_3$ VARIOUS PROBLEMS........................................................................... 421. Property (—). 2. An example of the equality Λ(S) = Γ for S from $∑^0_3$3. An open problem concerning $Λ_0(S)$REFERENCES................................................................................................................................................................ 46
LA - eng
KW - series, summability
UR - http://eudml.org/doc/268622
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.