Prime mappings, number of factors and binary operations

Eric K. van Douwen

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1981

Abstract

top
CONTENTS1. Interesting mappings on finite powers..................................................... 52. Results.................................................................................................................... 63. Conventions and notation.................................................................................... 84. βω-spaces.............................................................................................................. 85. Canonical partition relations and the Prime Mapping Lemma.................... 96. The Number of Factors Lemma......................................................................... 117. Consequences of the Number of Factors Lemma......................................... 138. Direction of the coordinate axes......................................................................... 169. Binary operations................................................................................................... 1810. Extension of binary operations.......................................................................... 2111. Stronger versions of the Prime Mapping Lemma.......................................... 2212. Extensions of binary operations on ω............................................................... 2313. Examples................................................................................................................ 2414. Appendix 1: An application of non-Q-points..................................................... 2515. Appendix 3: Homeomorphs of βω in certain finite powers............................ 2616. Appendix 3: Mappings onto βω-spaces............................................................ 2817. Appendix 4: Square compactiiications.............................................................. 2918. Appendix 5: Some points of interest.................................................................. 30References.................................................................................................................... 34

How to cite

top

Eric K. van Douwen. Prime mappings, number of factors and binary operations. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1981. <http://eudml.org/doc/268647>.

@book{EricK1981,
abstract = {CONTENTS1. Interesting mappings on finite powers..................................................... 52. Results.................................................................................................................... 63. Conventions and notation.................................................................................... 84. βω-spaces.............................................................................................................. 85. Canonical partition relations and the Prime Mapping Lemma.................... 96. The Number of Factors Lemma......................................................................... 117. Consequences of the Number of Factors Lemma......................................... 138. Direction of the coordinate axes......................................................................... 169. Binary operations................................................................................................... 1810. Extension of binary operations.......................................................................... 2111. Stronger versions of the Prime Mapping Lemma.......................................... 2212. Extensions of binary operations on ω............................................................... 2313. Examples................................................................................................................ 2414. Appendix 1: An application of non-Q-points..................................................... 2515. Appendix 3: Homeomorphs of βω in certain finite powers............................ 2616. Appendix 3: Mappings onto βω-spaces............................................................ 2817. Appendix 4: Square compactiiications.............................................................. 2918. Appendix 5: Some points of interest.................................................................. 30References.................................................................................................................... 34},
author = {Eric K. van Douwen},
keywords = {p-prime mapping; beta-omega-space; Stone-Cech compactification of the countable discrete space; Stone-Cech remainder of a realcompact space; first countable non-compact realcompact space without isolated points; continuous binary operations; means},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Prime mappings, number of factors and binary operations},
url = {http://eudml.org/doc/268647},
year = {1981},
}

TY - BOOK
AU - Eric K. van Douwen
TI - Prime mappings, number of factors and binary operations
PY - 1981
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTS1. Interesting mappings on finite powers..................................................... 52. Results.................................................................................................................... 63. Conventions and notation.................................................................................... 84. βω-spaces.............................................................................................................. 85. Canonical partition relations and the Prime Mapping Lemma.................... 96. The Number of Factors Lemma......................................................................... 117. Consequences of the Number of Factors Lemma......................................... 138. Direction of the coordinate axes......................................................................... 169. Binary operations................................................................................................... 1810. Extension of binary operations.......................................................................... 2111. Stronger versions of the Prime Mapping Lemma.......................................... 2212. Extensions of binary operations on ω............................................................... 2313. Examples................................................................................................................ 2414. Appendix 1: An application of non-Q-points..................................................... 2515. Appendix 3: Homeomorphs of βω in certain finite powers............................ 2616. Appendix 3: Mappings onto βω-spaces............................................................ 2817. Appendix 4: Square compactiiications.............................................................. 2918. Appendix 5: Some points of interest.................................................................. 30References.................................................................................................................... 34
LA - eng
KW - p-prime mapping; beta-omega-space; Stone-Cech compactification of the countable discrete space; Stone-Cech remainder of a realcompact space; first countable non-compact realcompact space without isolated points; continuous binary operations; means
UR - http://eudml.org/doc/268647
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.