Quaternionic geometry of matroids
Open Mathematics (2005)
- Volume: 3, Issue: 1, page 26-38
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] R. Bielawski, A. Dancer: “The geometry and topology of toric hyperkähler manifolds”, Comm. Anal. Geom., Vol. 8, (2000), pp. 727–760. Zbl0992.53034
- [2] L. Billera, C. Lee: “Sufficiency of McMullen’s conditions for f-vectors of simplicial polytopes”, Bull. Amer. Math. Soc. (N.S.), Vol. 2, (1980), pp. 181–185. http://dx.doi.org/10.1090/S0273-0979-1980-14712-6 Zbl0431.52009
- [3] M. Chari: “Two decompositions in topological combinatorics with applications to matroid complexes”, Trans. Amer. Math. Soc, Vol. 349, (1997), pp. 3925–3943. http://dx.doi.org/10.1090/S0002-9947-97-01921-1 Zbl0889.52013
- [4] P. Griffiths, J. Harris: Principles of algebraic geometry, Wiley, New York, 1978. Zbl0408.14001
- [5] M. Harada, N. Proudfoot: “Properties of the residual circle action on a toric hyperkahler variety”, Pac. J. Math, Vol. 214, (2004), pp. 263–284. http://dx.doi.org/10.2140/pjm.2004.214.263 Zbl1064.53057
- [6] W. Fulton: Introduction to Toric Varieties, Princeton University Press, New Jersey, 1993. Zbl0813.14039
- [7] T. Hausel: “Mirror symmetry and Langlands duality in the non-Abelian Hodge theory of a curve”, preprint, arXiv:math.AG/0406380.
- [8] T. Hausel, B. Sturmfels: “Toric hyperkähler varieties”, Documenta Mathematica, Vol. 7, (2002), pp. 495–534, [arXiv: math.AG/0203096] Zbl1029.53054
- [9] T. Hausel, E. Swartz: “Intersection forms of toric hyperkähler varieties”, preprint, arXiv:math.AG/0306369. Zbl1165.53352
- [10] T. Hibi: “What can be said about pure O-sequences?”, J. Combin. Theory Ser. A, Vol. 50, (1989), pp. 319–322. http://dx.doi.org/10.1016/0097-3165(89)90025-3
- [11] N. Hitchin: “The self-duality equations on a Riemann surface”, Proc. London Math. Soc., Vol. 55, (1987), pp. 59–126. Zbl0634.53045
- [12] H. Konno: “Cohomology rings of toric hyperkähler manifolds”, Internat. J. Math., Vol. 11, (2000), pp. 1001–1026. http://dx.doi.org/10.1142/S0129167X00000490 Zbl0991.53027
- [13] C.M. Lopez: “Chip firing and the Tutte polynomial”,Ann. Combinatorics,Vol,1, (1997),pp. 253–259. Zbl0901.05004
- [14] P. McMullen: “The numbers of faces of simplicial polytopes”, Israel J. Math., Vol. 9, (1971), pp. 559–570. Zbl0209.53701
- [15] H. Nakajima: Lectures on Hilbert schemes of points on surfaces, University Lecture Series, 18. American Mathematical Society, Providence, RI, 1999.
- [16] H. Nakajima: “Quiver varieties and finite-dimensional representations of quantum affine algebras”, J. Amer. Math. Soc., Vol. 14, (2001), pp. 145–238. http://dx.doi.org/10.1090/S0894-0347-00-00353-2 Zbl0981.17016
- [17] R. Stanley: “The number of faces of a simplicial convex polytope”, Adv. in Math., Vol. 35, (1980), pp. 236–238. http://dx.doi.org/10.1016/0001-8708(80)90050-X
- [18] R. Stanley: Cohen-Macaulay complexes, in Higher combinatorics (Proc. NATO Advanced Study Inst., Berlin, 1976) Reidel, Dordrecht, 1977, pp. 51–62. NATO Adv. Study Inst. Ser., Ser. C: Math. and Phys. Sci., 31.
- [19] R.P. Stanley: Combinatorics and Commutative Algebra, 2nd ed., Birkhäuser, Boston, 1996. Zbl0838.13008
- [20] E. Swartz: “ g-elements of matroid complexes”, Journal of Comb. Theory Ser. B, Vol. 88, (2003), pp. 369–375. http://dx.doi.org/10.1016/S0095-8956(03)00038-8 Zbl1033.52011