Closure Łukasiewicz algebras

Manuel Abad; Cecilia Cimadamore; José Díaz Varela; Laura Rueda; Ana Suardíaz

Open Mathematics (2005)

  • Volume: 3, Issue: 2, page 215-227
  • ISSN: 2391-5455

Abstract

top
In this paper, the variety of closure n-valued Łukasiewicz algebras, that is, Łukasiewicz algebras of order n endowed with a closure operator, is investigated. The lattice of subvarieties in the particular case in which the open elements form a three-valued Heyting algebra is obtained.

How to cite

top

Manuel Abad, et al. "Closure Łukasiewicz algebras." Open Mathematics 3.2 (2005): 215-227. <http://eudml.org/doc/268692>.

@article{ManuelAbad2005,
abstract = {In this paper, the variety of closure n-valued Łukasiewicz algebras, that is, Łukasiewicz algebras of order n endowed with a closure operator, is investigated. The lattice of subvarieties in the particular case in which the open elements form a three-valued Heyting algebra is obtained.},
author = {Manuel Abad, Cecilia Cimadamore, José Díaz Varela, Laura Rueda, Ana Suardíaz},
journal = {Open Mathematics},
keywords = {06D30; 03G20; 08B15},
language = {eng},
number = {2},
pages = {215-227},
title = {Closure Łukasiewicz algebras},
url = {http://eudml.org/doc/268692},
volume = {3},
year = {2005},
}

TY - JOUR
AU - Manuel Abad
AU - Cecilia Cimadamore
AU - José Díaz Varela
AU - Laura Rueda
AU - Ana Suardíaz
TI - Closure Łukasiewicz algebras
JO - Open Mathematics
PY - 2005
VL - 3
IS - 2
SP - 215
EP - 227
AB - In this paper, the variety of closure n-valued Łukasiewicz algebras, that is, Łukasiewicz algebras of order n endowed with a closure operator, is investigated. The lattice of subvarieties in the particular case in which the open elements form a three-valued Heyting algebra is obtained.
LA - eng
KW - 06D30; 03G20; 08B15
UR - http://eudml.org/doc/268692
ER -

References

top
  1. [1] M. Abad: Estructuras cíclica y monádica de un álgebra de Lukasiewicz n-valente, Notas de Lógica Matemática, Vol. 36, Instituto de Matemática, Universidad Nacional del Sur, Bahía Blanca, 1988. 
  2. [2] M. Abad and J.P. Díaz Varela: “Free Algebras in the Variety of Three-valued Closure Algebras”, J. Austral. Math. Soc. Vol. 72, (2002), pp. 181–197. http://dx.doi.org/10.1017/S1446788700003839 Zbl1023.06010
  3. [3] R. Balbes and P. Dwinger: Distributive Lattices, University of Missouri Press, Columbia, MO, 1974. 
  4. [4] G. Bezhanishvili: “Locally finite varieties”, Algebra Universais 46, Vol. 4, 2001, pp. 531–548. http://dx.doi.org/10.1007/PL00000358 
  5. [5] W. Blok: Varieties of interior algebras, Thesis (Ph.D.), University of Amsterdam, 1976. 
  6. [6] V. Boicescu, A. Filipoiu, G. Georgescu and S. Rudeanu: Lukasiewicz-Moisil Algebras, North Holland, 1991. 
  7. [7] R. Cignoli: Moisil Algebras, Notas de Lógica Matemática, Vol. 27, Instituto de Matemática, Universidad Nacional del Sur, Bahía Blanca, 1970. 
  8. [8] B.A. Davey: “On the lattice of subvarieties”, Houston J. Math., Vol. 5, (1979), pp. 183–192. Zbl0396.08008
  9. [9] J.P. Díaz Varela: Algebras de Clausura y su Estructura Simétrica, Tesis (Ph.D.), Bahía Blanca, Argentina, 1997. 
  10. [10] L. Iturrioz: “Łukasiewicz and Symmetrical Heyting Algebras”, ZML, Vol. 23(2), (1977), pp. 131–136. Zbl0373.02042
  11. [11] L. Iturrioz: “Two characteristic properties of three-valued Lukasiewicz algebras” Rep. Math. Logic, Vol. 8, (1977), pp. 63–69. 
  12. [12] Gr.C. Moisil: “Notes sur les logiques non-chrysippiennes”, Ann. Sci. Univ. Jassy, Vol. 27, (1941), pp. 86–98. 
  13. [13] A. Monteiro: L'aritmétique des filtres et les espaces topologiques Notas de Lógica Matemática, Vol. 29–30, Instituto de Matemática, Universidad Nacional del Sur, Bahía Blanca, 1974. 
  14. [14] L. Monteiro: “Algèbre du calcul propositionel trivalent de Heyting”, Fund. Math., Vol. 74, (1972), pp. 99–109. Zbl0248.02070
  15. [15] L. Monteiro: Algebras de Lukasiewicz trivalentes monádicas, Notas de Logica Matemática, Vol. 32, Instituto de Matemática, Universidad Nacional del Sur, Bahía Blanca, 1974. Zbl0298.02063
  16. [16] C.O. Sicoe: “Sur les ideaux des algèbres Lukasiewicziennes polivalentes” Rev. Roum. Math. Pures et Appl., Vol. 12, (1967), pp. 391–401. Zbl0166.25602
  17. [17] C.O. Sicoe: “On many-valued Lukasiewicz algebra” Proc. Japan Acad., Vol. 43, (1967), pp. 725–728. http://dx.doi.org/10.3792/pja/1195521470 Zbl0165.30901

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.