An essay on model theory

Ludomir Newelski

Open Mathematics (2003)

  • Volume: 1, Issue: 3, page 398-410
  • ISSN: 2391-5455

Abstract

top
Some basic ideas of model theory are presented and a personal outlook on its perspectives is given.

How to cite

top

Ludomir Newelski. "An essay on model theory." Open Mathematics 1.3 (2003): 398-410. <http://eudml.org/doc/268718>.

@article{LudomirNewelski2003,
abstract = {Some basic ideas of model theory are presented and a personal outlook on its perspectives is given.},
author = {Ludomir Newelski},
journal = {Open Mathematics},
keywords = {03-02},
language = {eng},
number = {3},
pages = {398-410},
title = {An essay on model theory},
url = {http://eudml.org/doc/268718},
volume = {1},
year = {2003},
}

TY - JOUR
AU - Ludomir Newelski
TI - An essay on model theory
JO - Open Mathematics
PY - 2003
VL - 1
IS - 3
SP - 398
EP - 410
AB - Some basic ideas of model theory are presented and a personal outlook on its perspectives is given.
LA - eng
KW - 03-02
UR - http://eudml.org/doc/268718
ER -

References

top
  1. [1] [Ba] J.T. Baldwin: Fundamentals of Stability Theory, Springer, Berlin, 1988. 
  2. [2] [Bu] S. Buechler: “Vaught conjecture for superstable theories of finite rank”, (1993), preprint. 
  3. [3] [CS] G. Cherlin and S. Shelah: “Superstable fields and groups”, Ann. Math. Logic, Vol. 18, (1980), pp. 227–270. http://dx.doi.org/10.1016/0003-4843(80)90006-6 
  4. [4] [CR] H.H. Crapo and G.C. Pota: On the foundations of combinatorial theory: combinatorial geometries, MIT Press, Cambridge (Mass.), 1970. 
  5. [5] [D] L. van den Dries: Tame topology and o-minimal structures, London Math. Soc. Lecture Notes Series 248, Cambridge Univ. Press, Cambridge, 1998. 
  6. [6] [Ho] W. Hodges: Model theory, Cambridge Univ. Press, Cambridge, 1993. 
  7. [7] [H1] E. Hrushovski: Contributions to model theory, Ph.D. thesis, Univ. of California at Berkeley, Berkeley, 1996. 
  8. [8] [H2] E. Hrushovski: “A new strongly minimal set”, Ann. Pure Appl. Logic, Vol. 50, (1990), pp. 117–138. http://dx.doi.org/10.1016/0168-0072(90)90046-5 
  9. [9] [CK] C.C. Chang and H.J. Keisler: Model Theory, 3rd Ed., North Holland, Amsterdam, 1990. 
  10. [10] [L] D. Lascar: “Why some people are excited by Vaught’s conjecture”, J. Symb. Logic, Vol. 50, (1985), pp. 973–982. http://dx.doi.org/10.2307/2273984 Zbl0593.03015
  11. [11] [Mc] A. Macintyre: “On N 1-categorical theories of fields”, Fund. Math., Vol. 71, (1971), pp. 1–25. Zbl0228.02033
  12. [12] [Ma] D. Marker: Model theory. An introduction, Grad. Texts in Math., Springer, New York, 2002. 
  13. [13] [Mo] M. Morley: “Categoricity in power”, Trans. AMS, Vol. 114, (1964), pp. 514–538. http://dx.doi.org/10.2307/1994188 Zbl0151.01101
  14. [14] [NPi] A. Nesin and A. Pillay: “Some model theory of compact Lie groups”, Trans. AMS, Vol. 326, (1991), pp. 453–463. http://dx.doi.org/10.2307/2001873 Zbl0742.03011
  15. [15] [Ne1] L. Newelski: “A proof of Saffe’s conjecture”, Fund. Math., Vol. 134, (1990), pp. 143–155. Zbl0716.03024
  16. [16] [Ne2] L. Newelski: “Meager forking and m-independence”, Proc. Int. Congress of Math., Berlin, 1998, Doc. Math., Extra Vol. II, (1998), pp. 33–42. Zbl0907.03015
  17. [17] [Ne3] L. Newelski: “m-normal theories”, Fund. Math., Vol. 170, (2001), pp. 141–163. http://dx.doi.org/10.4064/fm170-1-9 Zbl0996.03026
  18. [18] [Ne4] L. Newelski: “Small profinite groups”, J. Symb. Logic, Vol. 66, (2001), pp. 859–872. http://dx.doi.org/10.2307/2695049 Zbl0993.03049
  19. [19] [Ne5] L. Newelski: “Small profinite structures”, Trans. AMS, Vol. 354, (2002), pp. 925–943. http://dx.doi.org/10.1090/S0002-9947-01-02854-9 Zbl0985.03021
  20. [20] [Ne6] L. Newelski: “The diameter of a Lascar strong type”, Fund. Math., Vol. 176, (2003), pp. 157–170. Zbl1020.03032
  21. [21] [NPe] L. Newelski and M. Petrykowski: Coverings of groups and types, manuscript, 2003. 
  22. [22] [Pi1] A. Pillay: Geometric Model Theory, Clarendon Press, Oxford, 1996. 
  23. [23] [Pi2] A. Pillay: “Some model theory of compact complex spaces”, In: Hilbert’s tenth problem: relations with arithmetic and algebraic geometry. Ghent, 1999, Contemp. Math., Vol. 270, pp. 323–338. 
  24. [24] [Pi3] A. Pillay: “Model-theoretic consequences of a theorem of Campana and Fujiki”, Fund. Math., Vol. 174, (2002), pp. 187–192. Zbl1004.03032
  25. [25] [Po] B. Poizat: Groupes stables, Nur Al-Mantiq Wal-Ma’rifah, Villeurbane, France, 1985. 
  26. [26] [Sa] G. Sacks: Saturated Model Theory, Benjamin, Reading, 1972. 
  27. [27] [Sc] T. Scanlon: “The abc theorem for commutative algebraic groups in characteristic p”, Int. Math. Res. Notices, No. 18, (1997), pp. 881–898. http://dx.doi.org/10.1155/S1073792897000573 Zbl0912.14014
  28. [28] [Sh] S. Shelah: Classification Theory and the number of non-isomorphic models, 2nd Ed., North Holland, Amsterdam, 1990. 
  29. [29] [SHM] S. Shelah, L. Harrington, M. Makkai: “A proof of Vaught’s conjecture for ω-stable theories”, Israel J. Math., Vol. 49, (1984), pp. 181–238. 
  30. [30] [Wa] F.O. Wagner: Simple Theories, Kluwer, Dodrecht, 2000. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.