On differences of two squares

Manfred Kühleitner; Werner Nowak

Open Mathematics (2006)

  • Volume: 4, Issue: 1, page 110-122
  • ISSN: 2391-5455

Abstract

top
The arithmetic function ρ(n) counts the number of ways to write a positive integer n as a difference of two squares. Its average size is described by the Dirichlet summatory function Σn≤x ρ(n), and in particular by the error term R(x) in the corresponding asymptotics. This article provides a sharp lower bound as well as two mean-square results for R(x), which illustrates the close connection between ρ(n) and the number-of-divisors function d(n).

How to cite

top

Manfred Kühleitner, and Werner Nowak. "On differences of two squares." Open Mathematics 4.1 (2006): 110-122. <http://eudml.org/doc/268724>.

@article{ManfredKühleitner2006,
abstract = {The arithmetic function ρ(n) counts the number of ways to write a positive integer n as a difference of two squares. Its average size is described by the Dirichlet summatory function Σn≤x ρ(n), and in particular by the error term R(x) in the corresponding asymptotics. This article provides a sharp lower bound as well as two mean-square results for R(x), which illustrates the close connection between ρ(n) and the number-of-divisors function d(n).},
author = {Manfred Kühleitner, Werner Nowak},
journal = {Open Mathematics},
keywords = {11N37},
language = {eng},
number = {1},
pages = {110-122},
title = {On differences of two squares},
url = {http://eudml.org/doc/268724},
volume = {4},
year = {2006},
}

TY - JOUR
AU - Manfred Kühleitner
AU - Werner Nowak
TI - On differences of two squares
JO - Open Mathematics
PY - 2006
VL - 4
IS - 1
SP - 110
EP - 122
AB - The arithmetic function ρ(n) counts the number of ways to write a positive integer n as a difference of two squares. Its average size is described by the Dirichlet summatory function Σn≤x ρ(n), and in particular by the error term R(x) in the corresponding asymptotics. This article provides a sharp lower bound as well as two mean-square results for R(x), which illustrates the close connection between ρ(n) and the number-of-divisors function d(n).
LA - eng
KW - 11N37
UR - http://eudml.org/doc/268724
ER -

References

top
  1. [1] K. Corrádi and I. Kátai: “A comment on K.S. Gangadharan's paper “Two classical lattice point problems”” (in Hungarian), Magyar Tud. Akad. Mat. Fiz. Oszt. Közl., Vol. 17, (1967), pp. 89–97. 
  2. [2] J.L. Hafner: “New omega theorems for two classical lattice point problems”, Invent. Math., Vol. 63, (1981), pp. 181–186. http://dx.doi.org/10.1007/BF01393875 Zbl0458.10031
  3. [3] J.L. Hafner: “On the average order of a class of arithmetical functions”, J. Number Theory, Vol. 15, (1982), pp. 36–76. http://dx.doi.org/10.1016/0022-314X(82)90082-8 
  4. [4] M. Huxley: “Exponential sums and lattice points III”, Proc. London Math. Soc., Vol. 87(3), (2003), pp. 591–609. http://dx.doi.org/10.1112/S0024611503014485 Zbl1065.11079
  5. [5] A. Ivić, The Riemann zeta-function, Wiley & Sons, New York 1985. Zbl0556.10026
  6. [6] A. Ivić, E. Krätzel, M. Kühleitner and W.G. Nowak: “Lattice points in large regions and related arithmetic functions: Recent developments in a very classic topic”, In: W. Schwarz (Ed.): Proc. Conf. on Elementary and Analytic Number Theory ELAZ'04, held in Mainz, to appear; Available in electronic form at http://arXiv.org/pdf/math.NT/0410522. Zbl1177.11084
  7. [7] D.R. Heath-Brown: “The distribution and moments of the error term in the Dirichlet divisor problems”, Acta Arith., Vol. 60, (1992), pp. 389–415. Zbl0725.11045
  8. [8] E. Krätzel: Lattice points, Kluwer, Dordrecht-Boston-London, 1988. 
  9. [9] E. Krätzel: Analytische Funktionen in der Zahlentheorie, Teubner, Stuttgart-Leipzig-Wiesbaden, 2000. 
  10. [10] M. Kühleitner: “An Omega theorem on differences of two squares”, Acta Math. Univ. Comen., New Ser., Vol. 61, (1992), pp. 117–123. Zbl0823.11053
  11. [11] M. Kühleitner: “An Omega theorem on differences of two squares, II”, Acta Math. Univ. Comen., New Ser., Vol. 68, (1999), pp. 27–35. Zbl0961.11031
  12. [12] Y.-K. Lau and K.-M. Tsang: “Omega result for the mean square of the Riemann zeta function”, Manuscr. Math., Vol. 117, (2005), pp. 373–381. http://dx.doi.org/10.1007/s00229-005-0565-2 Zbl1073.11058
  13. [13] Y.-K. Lau and K.-M. Tsang: “Moments over short intervals”, Arch. Math., Vol. 84, (2005), pp. 249–257. http://dx.doi.org/10.1007/s00013-004-1119-7 Zbl1066.11043
  14. [14] T. Meurman: “On the mean square of the Riemann zeta-function”, Quart. J. Math. Oxford, Vol. 38(2), (1987), pp. 337–343. Zbl0624.10032
  15. [15] H.L. Montgomery and R.C. Vaughan: “Hilbert's inequality”, J. London, Vol. 8(2), (1974), pp. 73–82. Zbl0281.10021
  16. [16] W.G. Nowak: “On the divisor problem: Moments of Δ(x) over short intervals”, Acta Arithm., Vol. 109, (2003), pp. 329–341. Zbl1065.11076
  17. [17] E. Preissmann: “Sur la moyenne quadratique du terme de reste du problème du cercle”, C. R. Acad. Sci., Paris, Sér. I, Vol. 306, (1988), pp. 151–154. Zbl0654.10042
  18. [18] K. Soundararajan: “Omega results for the divisor and circle problems”, Int. Math. Res. Not., Vol. 36, (2003), pp. 1987–1998. http://dx.doi.org/10.1155/S1073792803130309 Zbl1130.11329
  19. [19] E.C. Titchmarsh: The theory of the Riemann zeta function, Clarendon Press, Oxford, 1951. 
  20. [20] K.C. Tong: “On divisor problems”, Acta Math. Sinica, Vol. 6, (1956), pp. 515–541. Zbl0075.25003
  21. [21] K.-M. Tsang: “Higher power moments of Δ(x), E(t), and P(x)”, Proc. London Math. Soc., III. Ser., Vol. 65, (1992), pp. 65–84. Zbl0725.11046
  22. [22] W. Zhai: “On higher-power moments of Δ(x)”, Acta Arith., Vol. 112, (2004), pp. 367–395. 
  23. [23] W. Zhai: “On higher-power moments of Δ(x), II”, Acta Arith., Vol. 114, (2004), pp. 35–54. http://dx.doi.org/10.4064/aa114-1-3 
  24. [24] W. Zhai: “On higher-power moments of Δ(x), III”, Acta Arith., Vol. 118, (2005), pp. 263–281. Zbl1085.11049

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.