Quaternionic and para-quaternionic CR structure on (4n+3)-dimensional manifolds

Dmitri Alekseevsky; Yoshinobu Kamishima

Open Mathematics (2004)

  • Volume: 2, Issue: 5, page 732-753
  • ISSN: 2391-5455

Abstract

top
We define notion of a quaternionic and para-quaternionic CR structure on a (4n+3)-dimensional manifold M as a triple (ω1,ω2,ω3) of 1-forms such that the corresponding 2-forms satisfy some algebraic relations. We associate with such a structure an Einstein metric on M and establish relations between quaternionic CR structures, contact pseudo-metric 3-structures and pseudo-Sasakian 3-structures. Homogeneous examples of (para)-quaternionic CR manifolds are given and a reduction construction of non homogeneous (para)-quaternionic CR manifolds is described.

How to cite

top

Dmitri Alekseevsky, and Yoshinobu Kamishima. "Quaternionic and para-quaternionic CR structure on (4n+3)-dimensional manifolds." Open Mathematics 2.5 (2004): 732-753. <http://eudml.org/doc/268728>.

@article{DmitriAlekseevsky2004,
abstract = {We define notion of a quaternionic and para-quaternionic CR structure on a (4n+3)-dimensional manifold M as a triple (ω1,ω2,ω3) of 1-forms such that the corresponding 2-forms satisfy some algebraic relations. We associate with such a structure an Einstein metric on M and establish relations between quaternionic CR structures, contact pseudo-metric 3-structures and pseudo-Sasakian 3-structures. Homogeneous examples of (para)-quaternionic CR manifolds are given and a reduction construction of non homogeneous (para)-quaternionic CR manifolds is described.},
author = {Dmitri Alekseevsky, Yoshinobu Kamishima},
journal = {Open Mathematics},
keywords = {53C55; 57S25},
language = {eng},
number = {5},
pages = {732-753},
title = {Quaternionic and para-quaternionic CR structure on (4n+3)-dimensional manifolds},
url = {http://eudml.org/doc/268728},
volume = {2},
year = {2004},
}

TY - JOUR
AU - Dmitri Alekseevsky
AU - Yoshinobu Kamishima
TI - Quaternionic and para-quaternionic CR structure on (4n+3)-dimensional manifolds
JO - Open Mathematics
PY - 2004
VL - 2
IS - 5
SP - 732
EP - 753
AB - We define notion of a quaternionic and para-quaternionic CR structure on a (4n+3)-dimensional manifold M as a triple (ω1,ω2,ω3) of 1-forms such that the corresponding 2-forms satisfy some algebraic relations. We associate with such a structure an Einstein metric on M and establish relations between quaternionic CR structures, contact pseudo-metric 3-structures and pseudo-Sasakian 3-structures. Homogeneous examples of (para)-quaternionic CR manifolds are given and a reduction construction of non homogeneous (para)-quaternionic CR manifolds is described.
LA - eng
KW - 53C55; 57S25
UR - http://eudml.org/doc/268728
ER -

References

top
  1. [1] D.V. Alekseevsky, V. Cortés: “Classification of pseudo-Riemannian symmetric spaces of quaternionic Kähler type”, Preprint Institut Eli Cartan, Vol. 11, (2004). Zbl1077.53040
  2. [2] D.A. Alekseevsky and Y. Kamishima: “Locally pseudo-conformal quaternionic CR structure”, preprint. Zbl1223.53054
  3. [3] A. Besse: Einstein manifolds, Springer Verlag, 1987. 
  4. [4] O. Biquard: Quaternionic structures in mathematics and physics, World Sci. Publishing, Rome, 1999, River Edge, NJ, 2001, pp. 23–30. Zbl0993.53017
  5. [5] D.E. Blair: “Riemannian geometry of contact and symplectic manifolds Contact manifolds”, Birkhäuser, Progress in Math., Vol. 203, (2002). Zbl1011.53001
  6. [6] C.P. Boyer, K. Galicki and B.M. Mann: “The geometry and topology of 3-Sasakian manifolds”, Jour. reine ange. Math., Vol. 455, (1994), pp. 183–220. Zbl0889.53029
  7. [7] N.J. Hitchin: “The self-duality equations on a Riemannian surface”, Proc. London Math. Soc., Vol. 55, (1987), pp. 59–126. Zbl0634.53045
  8. [8] S. Ishihara: “Quaternion Kählerian manifolds”, J. Diff. Geom., Vol. 9, (1974), pp. 483–500. Zbl0297.53014
  9. [9] S. Ishihara: “Quaternion Kählerian manifolds and fibred Riemannian spaces with Sasakian 3-structure”, Kōdai Math. Sem. Rep., Vol. 25, (1973), pp. 321–329. Zbl0267.53023
  10. [10] S. Ishihara and M. Konishi: “Real contact and complex contact structure”, Sea. Bull. Math., Vol. 3, (1979), pp. 151–161. Zbl0429.53026
  11. [11] W. Jelonek: “Positive and negative 3-K-contact structures”, Proc. of A.M.S., Vol. 129, (2000), pp. 247–256. http://dx.doi.org/10.1090/S0002-9939-00-05527-1 Zbl0977.53074
  12. [12] R. Kulkarni: “Proper actions and pseudo-Riemannian space forms”, Advances in Math., Vol. 40, (1981), pp. 10–51. http://dx.doi.org/10.1016/0001-8708(81)90031-1 
  13. [13] T. Kashiwada: “On a contact metric structure”, Math. Z., Vol. 238, (2001), pp. 829–832. http://dx.doi.org/10.1007/s002090100279 Zbl1004.53058
  14. [14] M. Konishi: “On manifolds with Sasakian 3-structure over quaternionic Kaehler manifolds”, |emphKodai Math. Jour., Vol. 29, (1975), pp. 194–200. Zbl0308.53035
  15. [15] S. Kobayashi and K. Nomizu: Foundations of differential geometry I, II, Interscience John Wiley & Sons, New York, 1969. Zbl0175.48504
  16. [16] A. Swann: “Aspects symplectiques de la géométrie quaternionique”, C. R. Acad. Sci. Paris, Seria I, Vol. 308, (1989), pp. 225–228. Zbl0661.53023
  17. [17] S. Tanno: “Killing vector fields on contact Riemannian manifolds and fibering related to the Hopf fibrations”, |emphTôhoku Math. Jour., Vol. 23, (1971), pp. 313–333. 
  18. [18] S. Tanno: “Remarks on a triple of K-contact structures”, Tôhoku Math. Jour., Vol. 48, (1996), pp. 519–531. Zbl0881.53040
  19. [19] J. Wolf: Spaces of constant curvature, McGraw-Hill, Inc., 1967. Zbl0162.53304

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.